|   | 
Details
   web
Records
Author Haviland, David
Title Superconducting circuits: Quantum phase slips Type Journal Article
Year 2010 Publication (up) Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue Pages 565–566
Keywords fromIPMRAS
Abstract Coulomb interactions can cause a rapid change in the phase of the wavefunction along a very narrow superconducting system. Such a phase slip at the quantum level is now measured in a chain of Josephson junctions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 807
Permanent link to this record
 

 
Author Toyabe, Shoichi; Sagawa, Takahiro; Ueda, Masahito; Muneyuki, Eiro; Sano, Masaki
Title Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality Type Journal Article
Year 2010 Publication (up) Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue 12 Pages 988-992
Keywords fromIPMRAS
Abstract In 1929, Leo Szilard invented a feedback protocol in which a hypothetical intelligence called Maxwell's demon pumps heat from an isothermal environment and transduces it to work. After an intense controversy that lasted over eighty years; it was finally clarified that the demon's role does not contradict the second law of thermodynamics, implying that we can convert information to free energy in principle. Nevertheless, experimental demonstration of this information-to-energy conversion has been elusive. Here, we demonstrate that a nonequilibrium feedback manipulation of a Brownian particle based on information about its location achieves a Szilard-type information-energy conversion. Under real-time feedback control, the particle climbs up a spiral-stairs-like potential exerted by an electric field and obtains free energy larger than the amount of work performed on it. This enables us to verify the generalized Jarzynski equality, or a new fundamental principle of “information-heat engine” which converts information to energy by feedback control.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 831
Permanent link to this record
 

 
Author Home, Jonathan
Title Quantum entanglement: Watching correlations disappear Type Journal Article
Year 2010 Publication (up) Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue 12 Pages 938-939
Keywords fromIPMRAS
Abstract Engineered decoherence enables tracking of multipartite entanglement as a quantum state decays.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 832
Permanent link to this record
 

 
Author Saffman, Mark
Title Quantum computing: A quantum telecom link Type Journal Article
Year 2010 Publication (up) Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue 11 Pages 838-839
Keywords fromIPMRAS
Abstract Converting data-carrying photons to telecommunication wavelengths enables distribution of quantum information over long distances.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 833
Permanent link to this record
 

 
Author Raussendorf, Robert
Title Quantum computing: Shaking up ground states Type Journal Article
Year 2010 Publication (up) Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue 11 Pages 840-841
Keywords fromIPMRAS
Abstract Measurement-based quantum computation with an Affleck-Kennedy-Lieb-Tasaki state is experimentally realized for the first time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 834
Permanent link to this record
 

 
Author Buchanan, Mark
Title Body of evidence Type Manuscript
Year 2010 Publication (up) Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue Pages
Keywords fromIPMRAS
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 837
Permanent link to this record
 

 
Author Stevens, Martin J.; Baek, Burm; Dauler, Eric A.; Kerman, Andrew J.; Molnar, Richard J.; Hamilton, Scott A.; Berggren, Karl K.; Mirin, Richard P.; Nam, Sae Woo
Title High-order temporal coherences of
chaotic and laser light Type Journal Article
Year 2010 Publication (up) Optics Express Abbreviated Journal Opt. Express
Volume 18 Issue 2 Pages 1430-1437
Keywords SNSPD
Abstract We demonstrate a new approach to measuring high-order temporal coherences that uses a four-element superconducting nanowire single-photon detector. The four independent, interleaved single-photon-sensitive elements parse a single spatial mode of an optical beam over dimensions smaller than the minimum diffraction-limited spot size. Integrating this device with four-channel time-tagging electronics to generate multi-start, multi-stop histograms enables measurement of temporal coherences up to fourth order for a continuous range of all associated time delays. We observe high-order photon bunching from a chaotic, pseudo-thermal light source, measuring maximum third- and fourth-order coherence values of 5.87 ± 0.17 and 23.1 ± 1.8, respectively, in agreement with the theoretically predicted values of 3! = 6 and 4! = 24. Laser light, by contrast, is confirmed to have coherence values of approximately 1 for second, third and fourth orders at all time delays.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes SSPD Approved no
Call Number RPLAB @ gujma @ Serial 685
Permanent link to this record
 

 
Author Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim
Title Thermal blinding of gated detectors in quantum cryptography Type Journal Article
Year 2010 Publication (up) Optics Express Abbreviated Journal Opt. Express
Volume 18 Issue 26 Pages 27938-27954
Keywords quantum cryptography; QKD; hacking; SPD; APD
Abstract It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [L. Lydersen et al., Nat. Photonics DOI:10.1038/nphoton.2010.214]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 729
Permanent link to this record
 

 
Author Zhong, Tian; Hu, Xiaolong; Wong, Franco N. C.; Berggren, Karl K.; Roberts, Tony D.; Battle, Philip
Title High-quality fiber-optic polarization entanglement distribution at 1.3 μm telecom wavelength Type Journal Article
Year 2010 Publication (up) Optics Letters Abbreviated Journal Opt. Lett.
Volume 35 Issue 9 Pages 1392-1394
Keywords
Abstract We demonstrate high-quality distribution of 1.3 μm polarization-entangled photons generated from a fiber-coupled periodically poled KTiOPO4 waveguide over 200 m fiber-optic cables. Time-multiplexed measurements with a 19% efficient superconducting nanowire single-photon detector at the remote location show a detected flux of 5.8 pairs / s at a pump power of 25 μW and an average two-photon quantum-interference visibility of 97.7% without subtraction of accidentals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes SSPD Approved no
Call Number RPLAB @ gujma @ Serial 686
Permanent link to this record
 

 
Author Churikov, Victor M.; Kopp, Victor I.; Genack, Azriel Z.
Title Chiral diffraction gratings in twisted microstructured fibers Type Journal Article
Year 2010 Publication (up) Optics Letters Abbreviated Journal Opt. Lett.
Volume 35 Issue 3 Pages 342-344
Keywords chiral diffracion gratings, optical fiber gratings, from chiralphotonics
Abstract We observed dips in transmission spectra of uniformly twisted pure-silica microstructured fibers. The spectral positions of the dips and their insensitivity to the surrounding medium are consistent with Bragg diffraction from the helical structure. The reproducibility of the variation of the dip wavelength with temperature up to 1000°C makes the chiral diffraction grating suitable for high-temperature sensing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 853
Permanent link to this record