|   | 
Details
   web
Records
Author Elezov, M.; Ozhegov, R.; Goltsman, G.; Makarov, V.
Title Countermeasure against bright-light attack on superconducting nanowire single-photon detector in quantum key distribution Type Journal Article
Year 2019 Publication (down) Opt. Express Abbreviated Journal Opt. Express
Volume 27 Issue 21 Pages 30979-30988
Keywords SSPD, SNSPD
Abstract We present an active anti-latching system for superconducting nanowire single-photon detectors. We experimentally test it against a bright-light attack, previously used to compromise security of quantum key distribution. Although our system detects continuous blinding, the detector is shown to be partially blindable and controllable by specially tailored sequences of bright pulses. Improvements to the countermeasure are suggested.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes PMID:31684339 Approved no
Call Number Serial 1275
Permanent link to this record
 

 
Author Nasr, M. B.; Minaeva, O.; Goltsman, G. N.; Sergienko, A. V.; Saleh, B. E.; Teich, M. C.
Title Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors Type Journal Article
Year 2008 Publication (down) Opt. Express Abbreviated Journal Opt. Express
Volume 16 Issue 19 Pages 15104-15108
Keywords SSPD, SNSPD
Abstract We generate ultrabroadband biphotons via the process of spontaneous parametric down-conversion in a quasi-phase-matched nonlinear grating that has a linearly chirped poling period. Using these biphotons in conjunction with superconducting single-photon detectors (SSPDs), we measure the narrowest Hong-Ou-Mandel dip to date in a two-photon interferometer, having a full width at half maximum (FWHM) of approximately 5.7 fsec. This FWHM corresponds to a quantum optical coherence tomography (QOCT) axial resolution of 0.85 µm. Our results indicate that a high flux of nonoverlapping biphotons may be generated, as required in many applications of nonclassical light.
Address Departments of Electrical & Computer Engineering and Physics, Quantum Imaging Laboratory, Boston University, Boston, MA 02215, USA. boshra@bu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes PMID:18795048 Approved no
Call Number Serial 1408
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Izbenko, V.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, R.
Title Nano-structured superconducting single-photon detectors Type Journal Article
Year 2004 Publication (down) Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Abbreviated Journal
Volume 520 Issue 1-3 Pages 527-529
Keywords NbN SSPD, SNSPD
Abstract NbN detectors, formed into meander-type, 10×10-μm2 area structures, based on ultrathin (down to 3.5-nm thickness) and nanometer-width (down to below 100 nm) NbN films are capable of efficiently detecting and counting single photons from the ultraviolet to near-infrared optical wavelength range. Our best devices exhibit QE >15% in the visible range and ∼10% in the 1.3–1.5-μm infrared telecommunication window. The noise equivalent power (NEP) ranges from ∼10−17 W/Hz1/2 at 1.5 μm radiation to ∼10−19 W/Hz1/2 at 0.56 μm, and the dark counts are over two orders of magnitude lower than in any semiconducting competitors. The intrinsic response time is estimated to be <30 ps. Such ultrafast detector response enables a very high, GHz-rate real-time counting of single photons. Already established applications of NbN photon counters are non-invasive testing and debugging of VLSI Si CMOS circuits and quantum communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0168-9002 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1495
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Zhong, J. Q.; Shi, S. C.; Hayton, D. J.; Vercruyssen, N.; Gao, J. R.; Goltsman, G. N.
Title Temperature dependence of superconducting hot electron bolometers Type Conference Article
Year 2013 Publication (down) Not published results: 24th international symposium on space terahertz technology Abbreviated Journal
Volume Issue Pages
Keywords HEB
Abstract
Address Groningen,The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1067
Permanent link to this record
 

 
Author Bandurin, D. A.; Svintsov, D.; Gayduchenko, I.; Xu, S. G.; Principi, A.; Moskotin, M.; Tretyakov, I.; Yagodkin, D.; Zhukov, S.; Taniguchi, T.; Watanabe, K.; Grigorieva, I. V.; Polini, M.; Goltsman, G. N.; Geim, A. K.; Fedorov, G.
Title Resonant terahertz detection using graphene plasmons Type Journal Article
Year 2018 Publication (down) Nat. Commun. Abbreviated Journal Nat. Commun.
Volume 9 Issue Pages 5392 (1 to 8)
Keywords THz, graphene plasmons
Abstract Plasmons, collective oscillations of electron systems, can efficiently couple light and electric current, and thus can be used to create sub-wavelength photodetectors, radiation mixers, and on-chip spectrometers. Despite considerable effort, it has proven challenging to implement plasmonic devices operating at terahertz frequencies. The material capable to meet this challenge is graphene as it supports long-lived electrically tunable plasmons. Here we demonstrate plasmon-assisted resonant detection of terahertz radiation by antenna-coupled graphene transistors that act as both plasmonic Fabry-Perot cavities and rectifying elements. By varying the plasmon velocity using gate voltage, we tune our detectors between multiple resonant modes and exploit this functionality to measure plasmon wavelength and lifetime in bilayer graphene as well as to probe collective modes in its moire minibands. Our devices offer a convenient tool for further plasmonic research that is often exceedingly difficult under non-ambient conditions (e.g. cryogenic temperatures) and promise a viable route for various photonic applications.
Address Physics Department, Moscow State University of Education (MSPU), Moscow, Russian Federation, 119435. fedorov.ge@mipt.ru
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2041-1723 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1148
Permanent link to this record