toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Nasr, M. B.; Minaeva, O.; Goltsman, G. N.; Sergienko, A. V.; Saleh, B. E.; Teich, M. C. url  doi
openurl 
  Title Submicron axial resolution in an ultrabroadband two-photon interferometer using superconducting single-photon detectors Type Journal Article
  Year 2008 Publication (down) Opt. Express Abbreviated Journal Opt. Express  
  Volume 16 Issue 19 Pages 15104-15108  
  Keywords SSPD, SNSPD  
  Abstract We generate ultrabroadband biphotons via the process of spontaneous parametric down-conversion in a quasi-phase-matched nonlinear grating that has a linearly chirped poling period. Using these biphotons in conjunction with superconducting single-photon detectors (SSPDs), we measure the narrowest Hong-Ou-Mandel dip to date in a two-photon interferometer, having a full width at half maximum (FWHM) of approximately 5.7 fsec. This FWHM corresponds to a quantum optical coherence tomography (QOCT) axial resolution of 0.85 µm. Our results indicate that a high flux of nonoverlapping biphotons may be generated, as required in many applications of nonclassical light.  
  Address Departments of Electrical & Computer Engineering and Physics, Quantum Imaging Laboratory, Boston University, Boston, MA 02215, USA. boshra@bu.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1094-4087 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:18795048 Approved no  
  Call Number Serial 1408  
Permanent link to this record
 

 
Author Verevkin, A.; Williams, C.; Gol’tsman, G. N.; Sobolewski, R.; Gilbert, G. url  doi
openurl 
  Title Single-photon superconducting detectors for practical high-speed quantum cryptography Type Miscellaneous
  Year 2001 Publication (down) OFCC/ICQI Abbreviated Journal OFCC/ICQI  
  Volume Issue Pages Pa3  
  Keywords NbN SSPD, SNSPD, QKD, quantum cryptography  
  Abstract We have developed an ultrafast superconducting single-photon detector with negligible dark counting rate. The detector is based on an ultrathin, submicron-wide NbN meander-type stripe and can detect individual photons in the visible to near-infrared wavelength range at a rate of at least 10 Gb/s. The above counting rate allows us to implement the NbN device to unconditionally secret quantum key distRochester, New Yorkribution in a practical, high-speed system using real-time Vernam enciphering.  
  Address Rochester, New York  
  Corporate Author Thesis  
  Publisher Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Optical Fiber Communication Conference and International Conference on Quantum Information  
  Notes -- from poster session. Approved no  
  Call Number Serial 1544  
Permanent link to this record
 

 
Author Goltsman, G.; Korneev, A.; Izbenko, V.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, R. url  doi
openurl 
  Title Nano-structured superconducting single-photon detectors Type Journal Article
  Year 2004 Publication (down) Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment Abbreviated Journal  
  Volume 520 Issue 1-3 Pages 527-529  
  Keywords NbN SSPD, SNSPD  
  Abstract NbN detectors, formed into meander-type, 10×10-μm2 area structures, based on ultrathin (down to 3.5-nm thickness) and nanometer-width (down to below 100 nm) NbN films are capable of efficiently detecting and counting single photons from the ultraviolet to near-infrared optical wavelength range. Our best devices exhibit QE >15% in the visible range and ∼10% in the 1.3–1.5-μm infrared telecommunication window. The noise equivalent power (NEP) ranges from ∼10−17 W/Hz1/2 at 1.5 μm radiation to ∼10−19 W/Hz1/2 at 0.56 μm, and the dark counts are over two orders of magnitude lower than in any semiconducting competitors. The intrinsic response time is estimated to be <30 ps. Such ultrafast detector response enables a very high, GHz-rate real-time counting of single photons. Already established applications of NbN photon counters are non-invasive testing and debugging of VLSI Si CMOS circuits and quantum communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0168-9002 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1495  
Permanent link to this record
 

 
Author Marksteiner, M.; Divochiy, A.; Sclafani, M.; Haslinger, P.; Ulbricht, H.; Korneev, A.; Semenov, A.; Gol'tsman, G.; Arndt, M. url  doi
openurl 
  Title A superconducting NbN detector for neutral nanoparticles Type Journal Article
  Year 2009 Publication (down) Nanotechnol. Abbreviated Journal Nanotechnol.  
  Volume 20 Issue 45 Pages 455501  
  Keywords SSPD; SNSPD; *Electric Conductivity; Microscopy, Electron, Scanning; Nanoparticles/*chemistry/ultrastructure; Nanotechnology/*methods; *Photons  
  Abstract We present a proof-of-principle study of superconducting single photon detectors (SSPD) for the detection of individual neutral molecules/nanoparticles at low energies. The new detector is applied to characterize a laser desorption source for biomolecules and allows retrieval of the arrival time distribution of a pulsed molecular beam containing the amino acid tryptophan, the polypeptide gramicidin as well as insulin, myoglobin and hemoglobin. We discuss the experimental evidence that the detector is actually sensitive to isolated neutral particles.  
  Address University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria. markus.arndt@univie.ac.at  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19822928 Approved no  
  Call Number Serial 1239  
Permanent link to this record
 

 
Author Sclafani, M.; Marksteiner, M.; Keir, F. M. L.; Divochiy, A.; Korneev, A.; Semenov, A.; Gol'tsman, G.; Arndt, M. url  doi
openurl 
  Title Sensitivity of a superconducting nanowire detector for single ions at low energy Type Journal Article
  Year 2012 Publication (down) Nanotechnol. Abbreviated Journal Nanotechnol.  
  Volume 23 Issue 6 Pages 065501 (1 to 5)  
  Keywords NbN SSPD, SNSPD, superconducting single ion detector, SSID, SNSID  
  Abstract We report on the characterization of a superconducting nanowire detector for ions at low kinetic energies. We measure the absolute single-particle detection efficiency eta and trace its increase with energy up to eta = 100%. We discuss the influence of noble gas adsorbates on the cryogenic surface and analyze their relevance for the detection of slow massive particles. We apply a recent model for the hot-spot formation to the incidence of atomic ions at energies between 0.2 and 1 keV. We suggest how the differences observed for photons and atoms or molecules can be related to the surface condition of the detector and we propose that the restoration of proper surface conditions may open a new avenue for SSPD-based optical spectroscopy on molecules and nanoparticles.  
  Address Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Vienna, Austria  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22248823 Approved no  
  Call Number Serial 1380  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: