toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vystavkin, A. N. url  openurl
  Title Estimation of noise equivalent power and design analysis of an andreev reflection hot-electron microbolometer for submillimeter radioastronomy Type Journal Article
  Year 1999 Publication (up) Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.  
  Volume Issue 10 Pages  
  Keywords HEB, detector, bolometer  
  Abstract Results of theoretical estimations and measurements of characteristics of an Andreev reflection hot-electron microbolometer for submillimeter radioastronomy made by different researchers are reviewed and analysed. Peculiarities and characteristics of the microbolometers using two types of microthermometer for measurement of the electron temperature increment under influence of the radiation: the SIN-junction and the transition-edge sensor (TES) with electrothermal feedback – are compared. Advantages of the microbolometer with the second type of the microthermometer when the TES is used simultaneously as the absorber of radiation are shown. Methods of achievement of the best noise equivalent power of the microbolometer in such version as well as methods of the matching the microbolometer with the incident radiation flow using planar antennas and with the channel of output signal measurement using a SQUID-picoammeter are considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 496  
Permanent link to this record
 

 
Author Semenov, A. V.; Devyatov, I. A.; Ryabchun, S. A.; Maslennikov, S. N.; Maslennikova, A. S.; Larionov, P. A.; Voronov, B. M.; Chulkova, G. M. url  openurl
  Title Absorption of terahertz electromagnetic radiation in dirty superconducting film at arbitrary type of the spectral functions Type Journal Article
  Year 2011 Publication (up) Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.  
  Volume Issue 10 Pages  
  Keywords terahertz electromagnetic radiation; superconductors; detectors of terahertz range  
  Abstract A problem of absorption of high-frequency electromagnetic field in dirty superconductor is treated within Keldysh technic. Expression for the source term in the kinetic equation for quasiparticle distribution function is derived. The result is significant for deriving a consistent microscopic theory of superconducting detectors for terahertz frequency range, perspective detectors on kinetic inductance of current-biased superconducting strip and on Josephson inductance of tunnel.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 7 pages Approved no  
  Call Number Serial 1117  
Permanent link to this record
 

 
Author Fedorov, G. E.; Stepanova, T. S.; Gazaliev, A. S.; Gaiduchenko, I. A.; Kaurova, N. S.; Voronov, B. M.; Goltzman, G. N. url  doi
openurl 
  Title Asymmetric devices based on carbon nanotubes for terahertz-range radiation detection Type Journal Article
  Year 2016 Publication (up) Semicond. Abbreviated Journal Semicond.  
  Volume 50 Issue 12 Pages 1600-1603  
  Keywords carbon nanotubes, CNT detectors  
  Abstract Various asymmetric detecting devices based on carbon nanotubes (CNTs) are studied. The asymmetry is understood as inhomogeneous properties along the conducting channel. In the first type of devices, an inhomogeneous morphology of the CNT grid is used. In the second type of devices, metals with highly varying work functions are used as the contact material. The relation between the sensitivity and detector configuration is analyzed. Based on the data obtained, approaches to the development of an efficient detector of terahertz radiation, based on carbon nanotubes are proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7826 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1776  
Permanent link to this record
 

 
Author Akhmadishina, K. F.; Bobrinetskiy, I. I.; Komarov, I. A.; Malovichko, A. M.; Nevolin, V. K.; Fedorov, G. E.; Golovin, A. V.; Zalevskiy, A. O.; Aidarkhanov, R. D. url  doi
openurl 
  Title Fast-response biological sensors based on single-layer carbon nanotubes modified with specific aptamers Type Journal Article
  Year 2015 Publication (up) Semicond. Abbreviated Journal Semicond.  
  Volume 49 Issue 13 Pages 1749-1753  
  Keywords carbon nanotubes, CNT detectors  
  Abstract The possibility of the fabrication of a fast-response biological sensor based on a composite of single-layer carbon nanotubes and aptamers for the specific detection of proteins is shown. The effect of modification of the surface of the carbon nanotubes on the selectivity and sensitivity of the sensors is investigated. It is shown that carboxylated nanotubes have a better selectivity for detecting thrombin.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7826 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1783  
Permanent link to this record
 

 
Author Lieberzeit, P.; Afzal, A.; Rehman, A.; Dickert, F. url  doi
openurl 
  Title Nanoparticles for detecting pollutants and degradation processes with mass-sensitive sensors Type Journal Article
  Year 2007 Publication (up) Sensors and Actuators B: Chemical Abbreviated Journal Sensors and Actuators B: Chemical  
  Volume 127 Issue 1 Pages 132-136  
  Keywords molecular imprinted polymer, MIP, recognition, quartz crystal microbalance, QCM, mass-sensitive sensor, detector  
  Abstract Compared with thin films, nanoparticle layers as coatings for QCM offer substantially increased interaction areas and sensitivities with favourable response times. Molybdenum disulphide (MoS2), e.g. has turned out to be a highly suitable material for interacting with thiols. The resulting materials are sufficiently soft according to Pearson to bind sulphur containing compounds reversibly. Depositing MoS2 nanoparticle submonolayers (particle size 200–300 nm) leads to an increase in sensor response by a factor of ten compared to a pure gold layer. Additionally, the nanoparticle layers show fully reversible sensor signals. Particle synthesis can also be combined with the molecular imprinting approach: by a precipitation technique, it is possible to generate molecularly imprinted TiO2 particles for engine oil degradation measurements. Compared with deposited thin layers, particles incorporate oxidised compounds from lubricants by a factor of two better.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 568  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: