|   | 
Details
   web
Records
Author Phillips, T. G.; Jefferts, K. B.
Title A low temperature bolometer heterodyne receiver for Millimeter wave astronomy Type Journal Article
Year 1973 Publication (down) Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.
Volume 44 Issue 8 Pages 1009-1014
Keywords InSb HEB mixer
Abstract Liquid helium cooled InSb hot electronbolometers are used in a balanced mixer configuration as detectors for an imagelessmicrowave receiver. The system is designed for mounting at the prime focus of the National Radio Astronomy Observatory (NRAO) 11 m antenna at Kitt Peak, Arizona, and is suitable for the study of rotational line spectra of interstellar gas molecules. Currently the operating frequency is in the 90–140 GHz band where the double sideband system noise temperature is 250 K.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk Approved no
Call Number Serial 927
Permanent link to this record
 

 
Author Phillips, T. G.; Keene, J.
Title Submillimeter astronomy [heterodyne spectroscopy] Type Conference Article
Year 1992 Publication (down) Proc. IEEE Abbreviated Journal
Volume 80 Issue Pages 1662-1678
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes To approve: number, series, pages Approved no
Call Number Serial 250
Permanent link to this record
 

 
Author Gordon, N. T.; Lees, D. J.; Bowen, G.; Phillips, T. S.; Haigh, M.; Jones, C. L.; Maxey, C. D.; Hipwood, L.; Catchpole, R. A.
Title HgCdTe detectors operating above 200 K Type Journal Article
Year 2006 Publication (down) J. Electron. Mater. Abbreviated Journal
Volume 35 Issue 6 Pages 1140-1144
Keywords HgCdTe detector
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0361-5235 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 467
Permanent link to this record
 

 
Author de Graauw, T.; Caux, E.; Guesten, R.; Helmich, F.; Pearson, J.; Phillips, T. G.; Schieder, R.; Tielens, X.; Saraceno, P.; Stutzki, J.; Wafelbakker, C. K.; Whyborn, N. D.
Title The Herschel-heterodyne instrument for the far-infrared (HIFI) Type Conference Article
Year 2005 Publication (down) Bulletin of the American Astronomical Society Abbreviated Journal
Volume Issue Pages 1219
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Bulletin of the American Astronomical Society Abbreviated Series Title
Series Volume 37 Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number ref2005AAS...207.3503D Serial 420
Permanent link to this record
 

 
Author De Luca, M.; Gupta, H.; Neufeld, D.; Gerin, M.; Teyssier, D.; Drouin, B. J.; Pearson, J. C.; Lis, D. C.; Monje, R.; Phillips, T. G.; Goicoechea, J. R.; Godard, B.; Falgarone, E.; Coutens, A.; Bell, T. A.
Title Herschel/HIFI discovery of HCL+ in the interstellar medium Type Journal Article
Year 2012 Publication (down) Astrophys. J. Lett. Abbreviated Journal
Volume 751 Issue 2 Pages L37
Keywords HEB mixer applications, HIFI, Herschel
Abstract The radical ion HCl+, a key intermediate in the chlorine chemistry of the interstellar gas, has been identified for the first time in the interstellar medium with the Herschel Space Observatory's Heterodyne Instrument for the Far-Infrared. The ground-state rotational transition of H35Cl+, 2Π3/2 J = 5/2-3/2, showing Λ-doubling and hyperfine structure, is detected in absorption toward the Galactic star-forming regions W31C (G10.6-0.4) and W49N. The complex interstellar absorption features are modeled by convolving in velocity space the opacity profiles of other molecular tracers toward the same sources with the fine and hyperfine structure of HCl+. This structure is derived from a combined analysis of optical data from the literature and new laboratory measurements of pure rotational transitions, reported in the accompanying Letter by Gupta et al. The models reproduce well the interstellar absorption, and the frequencies inferred from the astronomical observations are in exact agreement with those calculated using spectroscopic constants derived from the laboratory data. The detection of H37Cl+ toward W31C, with a column density consistent with the expected 35Cl/37Cl isotopic ratio, provides additional evidence for the identification. A comparison with the chemically related molecules HCl and H2Cl+ yields an abundance ratio of unity with both species (HCl+ : H2Cl+ : HCl ~ 1). These observations also yield the unexpected result that HCl+ accounts for 3%-5% of the gas-phase chlorine toward W49N and W31C, values several times larger than the maximum fraction (~1%) predicted by chemical models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1092
Permanent link to this record