toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kopp, Victor I.; Churikov, Victor M.; Zhang, Guoyin; Singer, Jonathan; Draper, Christopher W.; Chao, Norman; Neugroschl, Daniel; Genack, Azriel Z. openurl 
  Title Chiral fiber gratings: perspectives and challenges for sensing applications Type Conference Article
  Year 2007 Publication (down) Proceedings of Third european workshop on optical fibre sensors Abbreviated Journal Proc. 3rd European Workshop on Opt. Fibre Sensors  
  Volume 6619 Issue Pages 66190B-(1-8)  
  Keywords optical fiber gratings, chiral fiber gratings applications, chiral gratings applications, from chiralphotonics  
  Abstract Chiral fiber gratings are produced in a microforming process in which optical fibers with noncircular or nonconcentric cores are twisted as they pass though a miniature oven. Periodic glass structures as stable as the glass material itself are produced with helical pitch that ranges from under a micron to hundreds of microns. The geometry of the fiber cross section determines the symmetry of the resulting structure which in turn determines its polarization selectivity. Single helix structures are polarization insensitive while double helix gratings interact only with a single optical polarization. Both single and double helix gratings may act as a fiber long period grating, coupling the core and cladding modes. The coupling is manifested in a series of narrow dips in the transmission spectrum. The dip position is sensitive to fiber elongation, twist and temperature, and to the refractive index of the surrounding medium. The suitability of chiral gratings for sensing pressure, temperature and liquid levels is investigated. Polarization insensitive single helix silica glass gratings display excellent stability up to temperatures of 6000C, while a pressure sensor with dynamic range of nearly 40 dB is demonstrated in polarization selective double helix gratings.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 855  
Permanent link to this record
 

 
Author Genack, Azriel Z.; Kopp, Victor I.; Churikov, Victor M.; Singer, Jonathan; Chao, Norman; Neugroschl, Daniel A. openurl 
  Title Chiral fiber Bragg gratings Type Conference Article
  Year 2004 Publication (down) Proceedings of the SPIE Abbreviated Journal Proc. SPIE  
  Volume 5508 Issue Pages 57-64  
  Keywords optical fiber gratings, chiral fiber gratings, chiral gratings, from chiralphotonics  
  Abstract We have produced chiral fiber Bragg gratings with double-helix symmetry and measured the polarization and wavelength selective transmission properties of these structures. These gratings interact only with circularly polarized light with the same handedness as the grating twist and freely transmit light of the orthogonal polarization. The optical characteristics of chiral fibers are compared to those of planar cholesteric structures. The resonant standing wave at the band edge or at a defect state within the band gap, as well as the evanescent wave within the band gap is comprised of two counterpropagating components of equal amplitude. The electric field vector of such a circularly polarized standing wave does not rotate in time; rather it is linearly polarized in any given plane. The standing wave may be described in terms of the sense of circular polarization of the two counterpropagating components. The wavelength dependence of the angle q between the linearly polarized electromagnetic field and the extraordinary axis, which is constant throughout a long structure, is obtained in a simple calculation. The results are in good agreement with scattering matrix calculations. Resonant chiral gratings are demonstrated for microwave radiation whereas chiral gratings with pitch exceeding the wavelength are demonstrated at optical wavelengths in single-mode glass fibers. The different functionalities of these fibers are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 854  
Permanent link to this record
 

 
Author Churikov, Victor M.; Kopp, Victor I.; Genack, Azriel Z. openurl 
  Title Chiral diffraction gratings in twisted microstructured fibers Type Journal Article
  Year 2010 Publication (down) Optics Letters Abbreviated Journal Opt. Lett.  
  Volume 35 Issue 3 Pages 342-344  
  Keywords chiral diffracion gratings, optical fiber gratings, from chiralphotonics  
  Abstract We observed dips in transmission spectra of uniformly twisted pure-silica microstructured fibers. The spectral positions of the dips and their insensitivity to the surrounding medium are consistent with Bragg diffraction from the helical structure. The reproducibility of the variation of the dip wavelength with temperature up to 1000°C makes the chiral diffraction grating suitable for high-temperature sensing.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 853  
Permanent link to this record
 

 
Author Kopp, Victor I.; Churikov, Victor M.; Genack, Azriel Z. url  openurl
  Title Chiral-fiber gratings sense the environment Type Conference Article
  Year 2008 Publication (down) Laser Focus World Abbreviated Journal  
  Volume 44 Issue 6 Pages 76-79  
  Keywords chiral fiber gratings, chiral gratings, from chiralphotonics  
  Abstract The article focuses on the use of chiral fiber gratings in sensing. It discusses the production of chiral optical fibers which are created through twisting fibers. It cites experiments concerning the function of chiral-fiber grating produced by twisting optical fibers. The process and results of the experiments are also discussed in the article.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 850  
Permanent link to this record
 

 
Author Lee, B. G.; Assefa, S.; Green, W. M. J.; Min Yang; Schow, C. L.; Jahnes, C. V.; Sheng Zhang; Singer, J.; Kopp, V. I.; Kash, J. A.; Vlasov, Y. A. openurl 
  Title Multichannel high-bandwidth coupling of ultradense silicon photonic waveguide array to standard-pitch fiber array Type Journal Article
  Year 2011 Publication (down) J. Lightwave Technol. Abbreviated Journal  
  Volume 29 Issue 4 Pages 475-482  
  Keywords optical waveguides, from chiralphotonics  
  Abstract A multichannel tapered coupler interfacing standard 250-μm-pitch low-numerical-aperture (NA) polarization-maintaining fiber arrays with ultradense 20- μm-pitch high-NA silicon waveguides is designed and fabricated. The coupler is based on an array of 12 dual-core glass waveguides on 250-μ m pitch that are tapered to a 20- μm pitch, simultaneously providing both pitch and spot-size conversion. At the wide end, the inner core matches the NA and mode profile of standard single-mode fiber. When drawn and tapered, the inner core “vanishes” and the outer core, surrounded by the clad, matches the NA and mode profile of the on-chip photonic waveguide. Ultradense high-efficiency coupling to an array of Si photonic waveguides is demonstrated using a 12-channel polarization-maintaining-fiber pigtailed tapered coupler. Coupling to Si waveguides is facilitated using SiON spot-size converters integrated into the Si photonic IC to provide 2-3-μm mode field diameters compatible with the tapered coupler. The tapered coupler achieves <; 1 dB coupling losses to photonic waveguides. Furthermore, eight-channel coupling is shown with less than -35 dB crosstalk between channels. Finally, a 640-Gb/s wavelength-division-multiplexing signal is coupled into four waveguides occupying 80 μm of chip edge, providing 160-Gb/s per-channel bandwidths.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 849  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: