|   | 
Details
   web
Records
Author Korneeva, Yu. P.; Trifonov, A. V.; Vakhtomin, Yu. B.; Smirnov, K. V.
Title Design of resonator for superconducting single-photon detector Type Journal Article
Year 2011 Publication (down) Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.
Volume Issue 12 Pages
Keywords SSPD optical resonator, SNSPD
Abstract A resonator for superconducting single-photon detector is designed. Near 60% coupling with a radiation propagating from a dielectric substrate of optical fiber is demonstrated to be achieved for typical values of the detector’s film sheet resistance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 6 pages Approved no
Call Number Serial 1827
Permanent link to this record
 

 
Author Shcheslavskiy, V.; Morozov, P.; Divochiy, A.; Vakhtomin, Yu.; Smirnov, K.; Becker, W.
Title Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector Type Journal Article
Year 2016 Publication (down) Rev. Sci. Instrum. Abbreviated Journal
Volume 87 Issue Pages 053117 (1 to 5)
Keywords SSPD, SNSPD, TCSPC, jitter
Abstract Time resolution is one of the main characteristics of the single photon detectors besides quantum efficiency and dark count rate. We demonstrate here an ultrafast time-correlated single photon counting (TCSPC) setup consisting of a newly developed single photon counting board SPC-150NX and a superconducting NbN single photon detector with a sensitive area of 7 × 7 μm. The combination delivers a record instrument response function with a full width at half maximum of 17.8 ps and system quantum efficiency ~5% at wavelength of 1560 nm. A calculation of the root mean square value of the timing jitter for channels with counts more than 1% of the peak value yielded about 7.6 ps. The setup has also good timing stability of the detector–TCSPC board.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1077
Permanent link to this record
 

 
Author Shcheslavskiy, V.; Morozov, P.; Divochiy, A.; Vakhtomin, Y.; Smirnov, K.; Becker, W.
Title Erratum: “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector” [Rev. Sci. Instrum. 87, 053117 (2016)] Type Miscellaneous
Year 2016 Publication (down) Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.
Volume 87 Issue 6 Pages 069901
Keywords SSPD, SNSPD, TCSPC, jitter
Abstract In the original paper1the Ref. 10 should be M. Sanzaro, N. Calandri, A. Ruggeri, C. Scarcella, G. Boso, M. Buttafava, and A. Tosi, Proc. SPIE9370, 93701T (2015).
Address Becker & Hickl GmbH, Nahmitzer Damm 30, Berlin 12277, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-6748 ISBN Medium
Area Expedition Conference
Notes PMID:27370512 Approved no
Call Number Serial 1810
Permanent link to this record
 

 
Author Korneev, A.; Minaeva, O.; Rubtsova, I.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Smirnov, K.; Seleznev, V.; Gol'tsman, G.; Pearlman, A.; Slysz, W.; Cross, A.; Alvarez, P.; Verevkin, A.; Sobolewski, R.
Title Superconducting single-photon ultrathin NbN film detector Type Journal Article
Year 2005 Publication (down) Quantum Electronics Abbreviated Journal
Volume 35 Issue 8 Pages 698-700
Keywords NbN SSPD, SNSPD
Abstract Superconducting single-photon ultrathin NbN film detectors are studied. The development of manufacturing technology of detectors and the reduction of their operating temperature down to 2 K resulted in a considerable increase in their quantum efficiency, which reached in the visible region (at 0.56 μm) 30%—40%, i.e., achieved the limit determined by the absorption coefficient of the film. The quantum efficiency exponentially decreases with increasing wavelength, being equal to ~20% at 1.55 μm and ~0.02% at 5 μm. For the dark count rate of ~10-4s-1, the experimental equivalent noise power was 1.5×10-20 W Hz-1/2; it can be decreased in the future down to the record low value of 5×10-21 W Hz-1/2. The time resolution of the detector is 30 ps.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Сверхпроводящий однофотонный детектор на основе ультратонкой пленки NbN Approved no
Call Number Serial 383
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Vachtomin, Y. B.; Smirnov, K. V.; Finkel, M. I.; Goltsman, G. N.; Kiselev, O. S.; Kinev, N. V.; Filippenko, L. V.; Koshelets, V. P.
Title Terahertz imaging system based on superconducting heterodyne integrated receiver Type Conference Article
Year 2014 Publication (down) Proc. THz and Security Applications Abbreviated Journal Proc. THz and Security Applications
Volume Issue Pages 113-125
Keywords SIS mixer, SIR, THz imaging
Abstract The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compared to traditional systems.

In this project we propose a prototype THz imaging system using an 1 pixel SIR and 2D scanner. At a local oscillator frequency of 500 GHz the best noise equivalent temperature difference (NETD) of the SIR is 10 mK at an integration time of 1 s and a detection bandwidth of 4 GHz. The scanner consists of two rotating flat mirrors placed in front of the antenna consisting of a spherical primary reflector and an aspherical secondary reflector. The diameter of the primary reflector is 0.3 m. The operating frequency of the imaging system is 600 GHz, the frame rate is 0.1 FPS, the scanning area is 0.5 × 0.5 m2, the image resolution is 50 × 50 pixels, the distance from an object to the scanner was 3 m. We have obtained THz images with a spatial resolution of 8 mm and a NETD of less than 2 K.
Address
Corporate Author Thesis
Publisher Springer Netherlands Place of Publication Dordrecht Editor Corsi, C.; Sizov, F.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-94-017-8828-1 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1368
Permanent link to this record