toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verevkin, A.; Gershenzon, E. M.; Gol'tsman, G. N.; Ptitsina, N. G.; Chulkova, G. M.; Smirnov, K. S.; Sobolewski, R. url  openurl
  Title Direct measurements of energy relaxation times in two-dimensional structures under quasi-equilibrium conditions Type Conference Article
  Year 2002 Publication (down) Mater. Sci. Forum Abbreviated Journal Mater. Sci. Forum  
  Volume 384-3 Issue Pages 107-116  
  Keywords 2DEG, AlGaAs/GaAs  
  Abstract A new microwave technique was successfully applied for direct studies of energy relaxation times in two-dimensional AlGaAs/GaAs structures under quasi-equilibrium conditions in the nanosecond and picosecond time scale. We report our results of energy relaxation time measurements in the temperature range 1.6-50 K, in quantum Hall effect regime in magnetic fields up to 4 T.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Materials Science Forum  
  Notes Approved no  
  Call Number Serial 1536  
Permanent link to this record
 

 
Author Goltsman, G. N.; Shcherbatenko, M. L.; Lobanov, Y. V.; Kovalyuk, V. V.; Kahl, O.; Ferrari, S.; Korneev, A.; Pernice, W. H. P. url  openurl
  Title Superconducting nanowire single photon detector for coherent detection of weak optical signals Type Abstract
  Year 2016 Publication (down) LPHYS'16 Abbreviated Journal LPHYS'16  
  Volume Issue Pages 1-2  
  Keywords SSPD, SNSPD  
  Abstract Traditionally, photon detectors are operated in a direct detection mode counting incident photonswith a known quantum efficiency. This procedure allows one to detect weak sources of radiation but allthe information about its frequency is limited by the optical filtering/resonating structures used which arenot as precise as would be required for some practical applications. In this work we propose heterodynereceiver based on a photon counting mixer which would combine excellent sensitivity of a photon countingdetector and excellent spectral resolution given by the heterodyne technique. At present, Superconducting-Nanowire-Single-Photon-Detectors (SNSPDs) [1] are widely used in a variety of applications providing thebest possible combination of the sensitivity and speed. SNSPDs demonstrate lack of drawbacks like highdark count rate or autopulsing, which are common for traditional semiconductor-based photon detectors,such as avalanche photon diodes.In our study we have investigated SNSPD operated as a photon counting mixer. To fully understandits behavior in such a regime, we have utilized experimental setup based on a couple of distributedfeedback lasers irradiating at 1.5 micrometers, one of which is being the Local Oscillator (LO) and theother mimics the test signal [2]. The SNSPD was operated in the current mode and the bias currentwas slightly below of the critical current. Advantageously, we have found that LO power needed for anoptimal mixing is of the order of hundreds of femtowatts to a few picowatts, which is promising for manypractical applications, such as receiver matrices [3]. With use of the two lasers, one can observe thevoltage pulses produced by the detected photons, and the time distribution of the pulses reproduces thefrequency difference between the lasers, forming power response at the intermediate frequency which canbe captured by either an oscilloscope (an analysis of the pulse statistics is needed) or by an RF spectrumanalyzer. Photon-counting nature of the detector ensures quantum-limited sensitivity with respect to theoptical coupling achieved. In addition to the chip SNSPD with normal incidence coupling, we use thedetectors with a travelling wave geometry design [4]. In this case a NbN nanowire is placed on the topof a Si3N4 nanophotonic waveguide, thus increasing the efficient interaction length. For this reason it ispossible to achieve almost complete absorption of photons and reduce the detector footprint. This reducesthe noise of the device together with the expansion of the bandwidth. Integrated device scheme allowsus to measure the optical losses with high accuracy. Our approach is fully scalable and, along with alarge number of devices integrated on a single chip can be adapted to the mid and far IR ranges wherephoton-counting measurement may be beneficial as well [5].Acknowledgements: This work was supported in part by the Ministry of Education and Science of theRussian Federation, contract No. 14.B25.31.0007 and by RFBR grant No. 16-32-00465.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1220  
Permanent link to this record
 

 
Author Florya, I. N.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Korneev, A. A.; Goltsman, G. N. url  doi
openurl 
  Title Photon counting statistics of superconducting single-photon detectors made of a three-layer WSi film Type Journal Article
  Year 2018 Publication (down) Low Temp. Phys. Abbreviated Journal Low Temp. Phys.  
  Volume 44 Issue 3 Pages 221-225  
  Keywords WSi SSPD, SNSPD  
  Abstract Superconducting nanowire single-photon detectors (SNSPD) are used in quantum optics when record-breaking time resolution, high speed, and exceptionally low levels of dark counts (false readings) are required. Their detection efficiency is limited, however, by the absorption coefficient of the ultrathin superconducting film for the detected radiation. One possible way of increasing the detector absorption without limiting its broadband response is to make a detector in the form of several vertically stacked layers and connect them in parallel. For the first time we have studied single-photon detection in a multilayer structure consisting of three superconducting layers of amorphous tungsten silicide (WSi) separated by thin layers of amorphous silicon. Two operating modes of the detector are illustrated: an avalanche regime and an arm-trigger regime. A shift in these modes occurs at currents of ∼0.5–0.6 times the critical current of the detector.

This work was supported by technical task No. 88 for scientific research at the National Research University “Higher School of Economics,” Grant No. 14.V25.31.0007 from the Ministry of Education and Science of Russia, and the work of G. N. Goltsman was supported by task No. 3.7328.2017/VU of the Ministry of Education and Science of Russia.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-777X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1310  
Permanent link to this record
 

 
Author Angeluts, A. A.; Bezotosnyi, V. V.; Cheshev, E. A.; Goltsman, G. N.; Finkel, M. I.; Seliverstov, S. V.; Evdokimov, M. N.; Gorbunkov, M. V.; Kitaeva, G. Kh.; Koromyslov, A. L.; Kostryukov, P. V.; Krivonos, M. S.; Lobanov, Yu. V.; Shkurinov, A. P.; Sarkisov, S. Yu.; Tunkin, V. G. doi  openurl
  Title Compact 1.64 THz source based on a dual-wavelength diode end-pumped Nd:YLF laser with a nearly semiconfocal cavity Type Journal Article
  Year 2014 Publication (down) Laser Phys. Lett. Abbreviated Journal  
  Volume 11 Issue 1 Pages 015004 (1 to 4)  
  Keywords HEB applications, HEB detector applications, short THz pulses detection  
  Abstract We describe a compact dual-wavelength (1.047 and 1.053 μm) diode end-pumped Q-switched Nd:YLE laser source which has a number of applications in demand. In order to achieve its dual-wavelength operation it is suggested for the first time to use essentially nonmonotonous dependences of the threshold pump powers at these wavelengths on the cavity length in the region of the cavity semiconfocal configuration under a radius of the pump beam smaller than the radius of the zero Gaussian mode. Here we demonstrate one of the most interesting applications for this laser: difference frequency generation in a GaSe crystal at a frequency of 1.64 THz. A superconducting hot-electron bolometer is used to detect the THz power generated and to measure its pulse characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1076  
Permanent link to this record
 

 
Author Korneev, Alexander; Golt'sman, Gregory; Pernice, Wolfram url  openurl
  Title Photonic integration meets single-photon detection Type Miscellaneous
  Year 2015 Publication (down) Laser Focus World Abbreviated Journal Laser Focus World  
  Volume 51 Issue 5 Pages 47-50  
  Keywords optical waveguide SSPD, SNSPD  
  Abstract By embedding superconducting nanowire single-photon detectors (SNSPDs) in nanophotonic circuits, these waveguide-integrated detectors are a key building block for future on-chip quantum computing applications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 1126  
Permanent link to this record
 

 
Author Zolotov, P.; Divochiy, A.; Vakhtomin, Y.; Seleznev, V.; Morozov, P.; Smirnov, K. url  doi
openurl 
  Title Superconducting single-photon detectors made of ultra-thin VN films Type Conference Article
  Year 2018 Publication (down) KnE Energy Abbreviated Journal KnE Energy  
  Volume 3 Issue 3 Pages 83-89  
  Keywords  
  Abstract We optimized technology of thin VN films deposition in order to study VN-based superconducting single-photon detectors. Investigation of the main VN film parameters showed that this material has lower resistivity compared to commonly used NbN. Fabricated from obtained films devices showed 100% intrinsic detection efficiency at 900 nm, at the temperature of 1.7 K starting with the bias current of 0.7·I  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1230  
Permanent link to this record
 

 
Author Tuchak, A. N.; Gol’tsman, G. N.; Kitaeva, G. K.; Penin, A. N.; Seliverstov, S. V.; Finkel, M. I.; Shepelev, A. V.; Yakunin, P. V. url  doi
openurl 
  Title Generation of nanosecond terahertz pulses by the optical rectification method Type Journal Article
  Year 2012 Publication (down) JETP Lett. Abbreviated Journal JETP Lett.  
  Volume 96 Issue 2 Pages 94-97  
  Keywords optical rectification, lithium niobate crystal  
  Abstract The possibility of the generation of quasi-cw terahertz radiation by the optical rectification method for broad-band Fourier unlimited nanosecond laser pulses has been experimentally demonstrated. The broadband radiation of a LiF dye-center laser is used as a pump source of a nonlinear optical oscillator. The energy efficiency of terahertz optical frequency conversion in a periodically polarized lithium niobate crystal is 4 × 10−9 at a pump power density of 7 MW/cm2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-3640 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1377  
Permanent link to this record
 

 
Author Baeva, E. M.; Titova, N. A.; Kardakova, A. I.; Piatrusha, S. U.; Khrapai, V. S. url  doi
openurl 
  Title Universal bottleneck for thermal relaxation in disordered metallic films Type Journal Article
  Year 2020 Publication (down) JETP Lett. Abbreviated Journal Jetp Lett.  
  Volume 111 Issue 2 Pages 104-108  
  Keywords NbN disordered metallic films, thermal relaxation  
  Abstract We study the heat relaxation in current biased metallic films in the regime of strong electron–phonon coupling. A thermal gradient in the direction normal to the film is predicted, with a spatial temperature profile determined by the temperature-dependent heat conduction. In the case of strong phonon scattering, the heat conduction occurs predominantly via the electronic system and the profile is parabolic. This regime leads to the linear dependence of the noise temperature as a function of bias voltage, in spite of the fact that all the dimensions of the film are large compared to the electron–phonon relaxation length. This is in stark contrast to the conventional scenario of relaxation limited by the electron–phonon scattering rate. A preliminary experimental study of a 200-nm-thick NbN film indicates the relevance of our model for materials used in superconducting nanowire single-photon detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-3640 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1164  
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Smirnov, K. V. url  doi
openurl 
  Title Electron-phonon interaction in a two-dimensional electron gas of semiconductor heterostructures at low temperatures Type Journal Article
  Year 2001 Publication (down) Jetp Lett. Abbreviated Journal Jetp Lett.  
  Volume 74 Issue 9 Pages 474-479  
  Keywords 2DEG, AlGaAs/GaAs heterostructures  
  Abstract Theoretical and experimental works devoted to studying electron-phonon interaction in the two-dimensional electron gas of semiconductor heterostructures at low temperatures in the case of strong heating in an electric field under quasi-equilibrium conditions and in a quantizing magnetic field perpendicular to the 2D layer are considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-3640 ISBN Medium  
  Area Expedition Conference  
  Notes По итогам проектов российского фонда фундаментальных исследований. Проект РФФИ # 98-02-16897 Электрон-фононное взаимодействие в двумерном электронном газе полупроводниковых гетероструктур при низких температурах Approved no  
  Call Number Serial 1541  
Permanent link to this record
 

 
Author Smirnov, K. V.; Ptitsina, N. G.; Vakhtomin, Y. B.; Verevkin, A. A.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title Energy relaxation of two-dimensional electrons in the quantum Hall effect regime Type Journal Article
  Year 2000 Publication (down) JETP Lett. Abbreviated Journal JETP Lett.  
  Volume 71 Issue 1 Pages 31-34  
  Keywords 2DEG, GaAs/AlGaAs heterostructures  
  Abstract The mm-wave spectroscopy with high temporal resolution is used to measure the energy relaxation times τe of 2D electrons in GaAs/AlGaAs heterostructures in magnetic fields B=0–4 T under quasi-equilibrium conditions at T=4.2 K. With increasing B, a considerable increase in τe from 0.9 to 25 ns is observed. For high B and low values of the filling factor ν, the energy relaxation rate τ −1e oscillates. The depth of these oscillations and the positions of maxima depend on the filling factor ν. For ν>5, the relaxation rate τ −1e is maximum when the Fermi level lies in the region of the localized states between the Landau levels. For lower values of ν, the relaxation rate is maximum at half-integer values of τ −1e when the Fermi level is coincident with the Landau level. The characteristic features of the dependence τ −1e (B) are explained by different contributions of the intralevel and interlevel electron-phonon transitions to the process of the energy relaxation of 2D electrons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-3640 ISBN Medium  
  Area Expedition Conference  
  Notes http://jetpletters.ru/ps/899/article_13838.shtml (“Энергетическая релаксация двумерных электронов в области квантового эффекта Холла”) Approved no  
  Call Number Serial 1559  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: