|   | 
Details
   web
Records
Author Huebers, H.-W.; Semenov, A.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol’tsman, G. N.; Voronov, B. M.
Title Superconducting hot electron bolometer as mixer for far-infrared heterodyne receivers Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4855 Issue Pages 395-401
Keywords NbN HEB mixers
Abstract Heterodyne receivers for applications in astronomy need quantum limited sensitivity. In instruments which are currently under development for SOFIA or Herschel superconducting hot electron bolometers (HEB) will be used to achieve this goal at frequencies above 1.4 THz. We present results of the development of a phonon-cooled NbN HEB mixer for GREAT, the German Receiver for Astronomy at Terahertz Frequencies, which will be flown aboard SOFIA. The mixer is a small superconducting bridge incorporated in a planar feed antenna and a hyperhemispherical lens. Mixers with logarithmic-spiral and double-slot feed antennas have been investigated with respect to their noise temperature, conversion loss, linearity and beam pattern. At 2.5 THz a double sideband noise temperature of 2200 K was achieved. The conversion loss was 17 dB. The response of the mixer was linear up to 400 K load temperature. The performance was verified by measuring an emission line of methanol at 2.5 THz. The measured linewidth is in good agreement with the linewidth deduced from pressure broadening measurements at millimeter wavelength. The results demonstrate that the NbN HEB is very well suited as a mixer for far-infrared heterodyne receivers.
Address
Corporate Author Thesis
Publisher (down) SPIE Place of Publication Tucson, USA Editor Phillips, T. G.; Zmuidzinas, J.
Language Summary Language Original Title
Series Editor Series Title Presented at the Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Abbreviated Series Title
Series Volume 4855 Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy
Notes Approved no
Call Number Serial 335
Permanent link to this record
 

 
Author Huebers, H.-W.; Schubert, J.; Semenov, A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Schwaab, G. W.
Title NbN phonon-cooled hot-electron bolometer as a mixer for THz heterodyne receivers Type Conference Article
Year 1999 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 3828 Issue Pages 410-416
Keywords NbN HEB mixers
Abstract We have investigated a phonon-cooled NbN hot electron bolometric (HEB) mixer in the frequency range from 0.7 THz to 5.2 THz. The device was a 3.5 nm thin film with an in- plane dimension of 1.7 X 0.2 micrometers 2 integrated in a complementary logarithmic spiral antenna. The measured DSB receiver noise temperatures are 1500 K, 2200 K, 2600 K, 2900 K, 4000 K, 5600 K and 8800 K. The sensitivity fluctuation, the long term stability, and the antenna pattern were measured and the suitability of the mixer for a practical heterodyne receiver is discussed.
Address
Corporate Author Thesis
Publisher (down) Spie Place of Publication Editor Chamberlain, J.M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz Spectroscopy and Applications II
Notes Approved no
Call Number Serial 1477
Permanent link to this record
 

 
Author Zhang, W.; Li, N.; Jiang, L.; Ren, Y.; Yao, Q.-J.; Lin, Z.-H.; Shi, S.-C.; Voronov, B. M.; Gol’tsman, G. N.
Title Dependence of noise temperature of quasi-optical superconducting hot-electron bolometer mixers on bath temperature and optical-axis displacement Type Conference Article
Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 6840 Issue Pages 684007 (1 to 8)
Keywords NbN HEB mixers, noise temperature, LO power
Abstract It is known that the increase of bath temperature results in the decrease of critical current of superconducting hot-electron bolometer (HEB) mixers owing to the depression of superconductivity, thus leading to the degradation of the mixer’s sensitivity. Here we report our study on the effect of bath temperature on the heterodyne mixing performance of quasi-optical superconducting NbN HEB mixers incorporated with a two-arm log-spiral antenna. The correlation between the bath temperature, critical current, LO power requirement and noise temperature is investigated at 0.5 THz. Furthermore, the heterodyne mixing performance of quasi-optical superconducting NbN HEB mixers is examined while there is an optical-axis displacement between the center of the extended hemispherical silicon lens and the superconducting NbN HEB device, which is placed on the back of the lens. Detailed experimental results and analysis are presented.
Address
Corporate Author Thesis
Publisher (down) Spie Place of Publication Editor Zhang, C.; Zhang, X.-C.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz Photonics
Notes Approved no
Call Number Serial 1415
Permanent link to this record
 

 
Author Ryabchun, S.; Tong, C.-yu E.; Blundell, R.; Kimberk, R.; Gol’tsman, G.
Title Effect of microwave radiation on the stability of terahertz hot-electron bolometer mixers Type Conference Article
Year 2006 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 6373 Issue Pages 63730J (1 to 5)
Keywords NbN HEB mixers, hot-electron bolometer mixers, stability, Allan variance, LO power fluctuations
Abstract We report our studies of the effect of microwave radiation, with a frequency much lower than that corresponding to the energy gap of the superconductor, on the performance of the NbN hot-electron bolometer (HEB) mixer incorporated into a THz heterodyne receiver. It is shown that exposing the HEB mixer to microwave radiation does not result in a significant rise of the receiver noise temperature and degradation of the mixer conversion gain so long as the level of microwave power is small compared to the local oscillator drive. Hence the injection of a small, but controlled amount of microwave radiation enables active compensation of local oscillator power and coupling fluctuations which can significantly degrade the stability of HEB mixer receivers.
Address
Corporate Author Thesis
Publisher (down) SPIE Place of Publication Editor Anwar, M.; DeMaria, A.J.; Shur, M.S.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz Physics, Devices, and Systems
Notes Approved no
Call Number Serial 1441
Permanent link to this record
 

 
Author Hubers, H.-W.; Semenov, A.; Richter, H.; Schwarz, M.; Gunther, B.; Smirnov, K.; Gol’tsman, G.; Voronov, B.
Title Heterodyne receiver for 3-5 THz with hot-electron bolometer mixer Type Conference Article
Year 2004 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5498 Issue Pages 579-586
Keywords NbN HEB mixers
Abstract Heterodyne receivers for applications in astronomy and planetary research need quantum limited sensitivity. In instruments which are currently build for SOFIA and Herschel superconducting hot electron bolometers (HEB) will be used to achieve this goal at frequencies above 1.4 THz. The local oscillator and the mixer are the most critical components for a heterodyne receiver operating at 3-5 THz. The design and performance of an optically pumped THz gas laser optimized for this frequency band will be presented. In order to optimize the performance for this frequency hot electron bolometer mixers with different in-plane dimensions and logarithmic-spiral feed antennas have been investigated. Their noise temperatures and beam patterns were measured. Above 3 THz the best performance was achieved with a superconducting bridge of 2.0 x 0.2 μm2 incorporated in a logarithmic spiral antenna. The DSB noise temperatures were 2700 K, 4700 K and 6400 K at 3.1 THz, 4.3 THz and 5.2 THz, respectively. The results demonstrate that the NbN HEB is very well suited as a mixer for THz heterodyne receivers up to at least 5 THz.
Address
Corporate Author Thesis
Publisher (down) SPIE Place of Publication Editor Zmuidzinas, J.; Holland, W.S.; Withington, S.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy II
Notes Approved no
Call Number Serial 1483
Permanent link to this record
 

 
Author Baubert, J.; Salez, M.; Delorme, Y.; Pons, P.; Goltsman, G.; Merkel, H.; Leconte, B.
Title Membrane-based HEB mixer for THz applications Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5116 Issue Pages 551-562
Keywords membrane NbN HEB mixers, heterodyne receiver, stress-less membrane, coupling efficiency, submillimeter-waves frequency, low-cost space applications
Abstract We report in this paper a new concept for 2.7 THz superconducting Niobium nitride (NbN) Hot-Electron Bolometer mixer (HEB). The membrane process was developped for space telecommnunication applications a few years ago and the HEB mixer concept is now considered as the best choice for low-noise submillimeter-wave frequency heterodyne receivers. The idea is then to join these two technologies. The novel fabrication scheme is to fabricate a NbN HEB mixer on a 1 μm thick stress-less Si3N4/SiO2 membrane. This seems to present numerous improvements concerning : use at higher RF frequencies, power coupling efficiency, HEB mixer sensitivity, noise temperature, and space applications. This work is to be continued within the framework of an ESA TRP project, a 2.7 THz heterodyne camera with numerous applications including a SOFIA airborne receiver. This paper presents the whole fabrication process, the validation tests and preliminary results. Membrane-based HEB mixer theory is currently being investigated and further tests such as heterodyne and Fourier transform spectrometry measurement are planed shortly.
Address
Corporate Author Thesis
Publisher (down) SPIE Place of Publication Editor Chiao, J.-C.; Varadan, V.K.; Cané, C.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Smart Sensors, Actuators, and MEMS
Notes Approved no
Call Number Serial 1520
Permanent link to this record
 

 
Author Cherednichenko, S.; Khosropanah, P.; Adam, A.; Merkel, H. F.; Kollberg, E. L.; Loudkov, D.; Gol'tsman, G. N.; Voronov, B. M.; Richter, H.; Huebers, H.-W.
Title 1.4- to 1.7-THz NbN hot-electron bolometer mixer for the Herschel space observatory Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4855 Issue Pages 361-370
Keywords NbN HEB mixers
Abstract NbN hot- electron bolometer mixers have reached the level of 10hv/k in terms of the input noise temperature with the noise bandwidth of 4-6 GHz from subMM band up to 2.5 THz. In this paper we discuss the major characteristics of this kind of receiver, i.e. the gain and the noise bandwidth, the noise temperature in a wide RF band, bias regimes and optimisation of RF coupling to the quasioptical mixer. We present the status of the development of the mixer for Band 6 Low for Herschel Telescope.
Address
Corporate Author Thesis
Publisher (down) SPIE Place of Publication Editor Phillips, T.G.; Zmuidzinas, J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy
Notes Approved no
Call Number Serial 1521
Permanent link to this record
 

 
Author Huebers, H.-W.; Semenov, A.; Schubert, J.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Krabbe, A.; Roeser, H.-P.
Title NbN hot-electron bolometer as THz mixer for SOFIA Type Conference Article
Year 2000 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4014 Issue Pages 195-202
Keywords NbN HEB mixers, airborne, stratospheric observatory, SOFIA
Abstract Heterodyne receivers for applications in astronomy need quantum limited sensitivity. We have investigated phonon- cooled NbN hot electron bolometric mixers in the frequency range from 0.7 THz to 5.2 THz. The devices were 3.5 nm thin films with an in-plane dimension of 1.7 X 0.2 micrometers 2 integrated in a complementary logarithmic spiral antenna. The best measured DSB receiver noise temperatures are 1300 K (0.7 THz), 2000 K (1.4 THz), 2100 K (1.6 THz), 2600 K (2.5 THz), 4000 K (3.1 THz), 5600 K (4.3 THz), and 8800 K (5.2 THz). The sensitivity fluctuation, the long term stability, and the antenna pattern were measured. The results demonstrate that this mixer is very well suited for GREAT, the German heterodyne receiver for SOFIA.
Address
Corporate Author Thesis
Publisher (down) SPIE Place of Publication Editor Melugin, R.K.; Roeser, H.-P.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Airborne Telescope Systems
Notes Approved no
Call Number Serial 1554
Permanent link to this record
 

 
Author Yngvesson, K. S.; Gerecht, E.; Musante, C. F.; Zhuang, Y.; Ji, M.; Goyette, T. M.; Dickinson, J. C.; Waldman, J.; Yagoubov, P. A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title Low-noise HEB heterodyne receivers and focal plane arrays for the THz regime using NbN Type Conference Article
Year 1999 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 3795 Issue Pages 357-368
Keywords NbN HEB mixers
Abstract We have developed prototype HEB receivers using thin film superconducting NbN devices deposited on silicon substrates. The devices are quasi-optically coupled through a silicon lens and a self-complementary log-specific toothed antenna. We measured DSB receiver noise temperatures of 500 K (13 X hf/2k) at 1.56 THz and 1,100 K (20 X hf/2k) at 2.24 THz. Noise temperatures are expected to fall further as devices and quasi-optical coupling methods are being optimized. The measured 3 dB IF conversion gain bandwidth for one device was 3 GHz, and it is estimated that the bandwidth over which the receiver noise temperature is within 3 dB of its minimum value is 6.5 GHz which is sufficient for a number of practical applications. We will discuss our latest results and give a detailed description of our prototype setup and experiments. We will also discuss our plans for developing focal plane arrays with tens of Hot Electron Bolometric mixer elements on a single silicon substrate which will make real time imaging systems in the THz region feasible.
Address
Corporate Author Thesis
Publisher (down) SPIE Place of Publication Editor Hwu, R.J.; Wu, K.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz and Gigahertz Photonics
Notes Approved no
Call Number Serial 1561
Permanent link to this record
 

 
Author Schwaab, G.W.; Auen, K.; Bruendermann, E.; Feinaeugle, R.; Gol’tsman, G.N.; Huebers, H.-W.; Krabbe, A.; Roeser, H.-P.; Sirmain, G.
Title 2- to 6-THz heterodyne receiver array for the Stratospheric Observatory for Infrared Astronomy (SOFIA) Type Conference Article
Year 1998 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 3357 Issue Pages 85-96
Keywords NbN HEB mixers, applications, stratospheric observatory, airborne
Abstract The Institute of Space Sensor Technology of the German Aerospace Center (DLR) is developing a heterodyne array receiver for the frequency range 2 to 6 THz for the Stratospheric Observatory for Infrared Astronomy (SOFIA). Key science issues in that frequency range are the observation of lines of atoms [e.g. (OI)], ions [e.g. (CII), (NII)], and molecules (e.g. OH, HD, CO) with high spectral resolution to study the dynamics and evolution of galactic and extragalactic objects. Long term goal is the development of an integrated array heterodyne receiver with superconducting hot electron bolometric (HEB) mixers and p-type Ge or Si lasers as local oscillators. The first generation receiver will be composed of HEB mixers in a 2 pixel 2 polarization array which will be pumped by a gas laser local oscillator. Improved Schottky diode mixers are the backup solution for the HEBs. The state of the art of HEB mixer and p-type Ge laser technology are described as well as possible improvements in the ’conventional’ optically pumped far-infrared laser and Schottky diode mixer technology. Finally, the frequency coverage of the first generation heterodyne receiver for some important astronomical transitions is discussed. The expected sensitivity is compared to line fluxes measured by the ISO satellite.
Address
Corporate Author Thesis
Publisher (down) SPIE Place of Publication Editor Phillips, T.G.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Advanced Technology MMW, Radio, and Terahertz Telescopes
Notes Approved no
Call Number Serial 1583
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Gershenzon, E. M.
Title High speed hot-electron superconducting bolometer Type Conference Article
Year 1993 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 2104 Issue Pages 181-182
Keywords NbN HEb, Nb, Al
Abstract Physical limitation of response time of a superconducting bolometer as well as the nature of non-equilibrium detection of radiation have been investigated for Al, Nb and NbN thin films in spectral range from submillimeter to near-infraredwavelengths [1,2]. In the case of ideal heat removal from the film with the f_‘. 100A thickness the detection mechanism is an electron heating effect that is not selective to radiation wavelength in a very broad range. The response time ofan electron heating bolometer is determined by an electron-phonon interaction time. This time is of about 10 ns, 0.5 ns and 20 ps for Al, Nb, and NbN correspondingly near the critical temperature of the superconducting film. Thesensitive area of the bolometer consists of a number of narrow strips (with awidth of 1µm) connected in parallel to contact pads; these pads together witha sapphire substrate and a ground plate represent the microstrip transmissionline with an impedance of 50 Q.
Address
Corporate Author Thesis
Publisher (down) SPIE Place of Publication Editor Birch, J.R.; Parker, T.J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 18th International Conference on Infrared and Millimeter Waves
Notes Approved no
Call Number Serial 1652
Permanent link to this record
 

 
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol’tsman, G.; Voronov, B.
Title Terahertz Heterodyn Receiver with a hot-electron bolometer mixer Type Conference Article
Year 2002 Publication Far-IR, Sub-mm & MM Detector Technology Workshop Abbreviated Journal Far-IR, Sub-mm & MM Detector Technology Workshop
Volume Issue Pages 3-24
Keywords NbN HEB mixers
Abstract During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA) [1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.
Address
Corporate Author Thesis
Publisher (down) NASA Place of Publication Editor Wolf, U.; Farhoomand, J.; McCreight, C.R.
Language Summary Language Original Title
Series Editor Series Title NASA CP Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Volume: 211408 Approved no
Call Number Serial 1537
Permanent link to this record
 

 
Author Maslennikova, A.; Larionov, P.; Ryabchun, S.; Smirnov, A.; Pentin, I.; Vakhtomin, Yu.; Smirnov, K.; Kaurova, N.; Voronov, B.; Goltsman, G.
Title Noise equivalent power and dynamic range of NBN hot-electron bolometers Type Conference Article
Year 2011 Publication Proc. MLPLIT Abbreviated Journal Proc. MLPLIT
Volume Issue Pages 146-148
Keywords NbN HEB
Abstract
Address Suzdal / Vladimir (Russia)
Corporate Author Thesis
Publisher (down) Modern laser physics and laser-information technologies for science and manufacture Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 1st international russian-chinese conference / youthschool-workshop
Notes September 23-28, 2011 Approved no
Call Number Serial 1386
Permanent link to this record
 

 
Author Vakhtomin, Y. B.; Finkel, M. I.; Antipov, S. V.; Smirnov, K. V.; Kaurova, N. S.; Drakinskii, V. N.; Voronov, B. M.; Gol’tsman, G. N.
Title The gain bandwidth of mixers based on the electron heating effect in an ultrathin NbN film on a Si substrate with a buffer MgO layer Type Journal Article
Year 2003 Publication J. of communications technol. & electronics Abbreviated Journal J. of communications technol. & electronics
Volume 48 Issue 6 Pages 671-675
Keywords NbN HEB mixers
Abstract Measurements of the intermediate frequency band 900 GHz of mixers based on the electron heating effect (EHE) in 2-nm- and 3.5-nm-thick superconducting NbN films sputtered on MgO and Si substrates with buffer MgO layers are presented. A 2-nm-thick superconducting NbN film with a critical temperature of 9.2 K has been obtained for the first time using a buffer MgO layer.
Address
Corporate Author Thesis
Publisher (down) MAIK Nauka/Interperiodica, Birmingham, AL Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1064-2269 ISBN Medium
Area Expedition Conference
Notes https://elibrary.ru/item.asp?id=17302119 (Полоса преобразования смесителей на эффекте разогрева электронов в ультратонких пленках NbN на подложках из Si с подслоем MgO) Approved no
Call Number Vakhtomin2003 Serial 1522
Permanent link to this record
 

 
Author Antipov, S.; Trifonov, A.; Krause, S.; Meledin, D.; Kaurova, N.; Rudzinski, M.; Desmaris, V.; Belitsky, V.; Goltsman, G.
Title Improved bandwidth of a 2 THz hot-electron bolometer heterodyne mixer fabricated on sapphire with a GaN buffer layer Type Journal Article
Year 2019 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 32 Issue 7 Pages 075003
Keywords NbN HEB mixer, GaN buffer layer, sapphire substrate
Abstract We report on the signal-to-noise and gain bandwidth of a niobium nitride (NbN) hot-electron bolometer (HEB) mixer at 2 THz fabricated on a sapphire substrate with a GaN buffer layer. Two mixers with different DC properties and geometrical dimensions were studied and they demonstrated very close bandwidth performance. The signal-to-noise bandwidth is increased to 8 GHz in comparison to the previous results, obtained without a buffer-layer. The data were taken in a quasi-optical system with the use of the signal-to-noise method, which is close to the signal levels used in actual astrophysical observations. We find an increase of the gain bandwidth to 5 GHz. The results indicate that prior results obtained on a substrate of crystalline GaN can also be obtained on a conventional sapphire substrate with a few micron MOCVD-deposited GaN buffer-layer.
Address
Corporate Author Thesis
Publisher (down) IOP Publishing Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Antipov_2019 Serial 1277
Permanent link to this record