|   | 
Details
   web
Records
Author Cherednichenko, S.; Khosropanah, P.; Adam, A.; Merkel, H. F.; Kollberg, E. L.; Loudkov, D.; Gol'tsman, G. N.; Voronov, B. M.; Richter, H.; Huebers, H.-W.
Title 1.4- to 1.7-THz NbN hot-electron bolometer mixer for the Herschel space observatory Type Conference Article
Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4855 Issue Pages 361-370
Keywords NbN HEB mixers
Abstract NbN hot- electron bolometer mixers have reached the level of 10hv/k in terms of the input noise temperature with the noise bandwidth of 4-6 GHz from subMM band up to 2.5 THz. In this paper we discuss the major characteristics of this kind of receiver, i.e. the gain and the noise bandwidth, the noise temperature in a wide RF band, bias regimes and optimisation of RF coupling to the quasioptical mixer. We present the status of the development of the mixer for Band 6 Low for Herschel Telescope.
Address
Corporate Author Thesis
Publisher (down) SPIE Place of Publication Editor Phillips, T.G.; Zmuidzinas, J.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy
Notes Approved no
Call Number Serial 1521
Permanent link to this record
 

 
Author Cherednichenko, S.; Yagoubov, P.; Il'in, K.; Gol'tsman, G.; Gershenzon, E.
Title Large bandwidth of NbN phonon-cooled hot-electron bolometer mixers Type Conference Article
Year 1997 Publication Proc. 27th Eur. Microwave Conf. Abbreviated Journal
Volume 2 Issue Pages 972-977
Keywords HEB mixer, fabrication process
Abstract The bandwidth of NbN phonon-cooled hot electron bolometer mixers has been systematically investigated with respect to the film thickness and film quality variation. The films, 2.5 to 10 nm thick, were fabricated on sapphire substrates using DC reactive magnetron sputtering. All devices consisted of several parallel strips, each 1 um wide and 2 um long, placed between Ti-Au contact pads. To measure the gain bandwidth we used two identical BWOs operating in the 120-140 GHz frequency range, one functioning as a local oscillator and the other as a signal source. The majority of the measurements were made at an ambient temperature of 4.2 K with optimal LO and DC bias. The maximum 3 dB bandwidth (about 4 GHz) was achieved for the devices made of films which were 2.5-3.5 nm thick, had a high critical temperature, and high critical current density. A theoretical analysis of bandwidth for these mixers based on the two-temperature model gives a good description of the experimental results if one assumes that the electron temperature is equal to the critical temperature.
Address Jerusalem, Israel
Corporate Author Thesis
Publisher (down) IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 27th Eur. Microwave Conf.
Notes Approved no
Call Number Serial 1075
Permanent link to this record
 

 
Author Blundell, R.; Kawamura, J. H.; Tong, C. E.; Papa, D. C.; Hunter, T. R.; Gol’tsman, G. N.; Cherednichenko, S. I.; Voronov, B. M.; Gershenzon, E. M.
Title A hot-electron bolometer mixer receiver for the 680-830 GHz frequency range Type Conference Article
Year 1998 Publication Proc. 6-th Int. Conf. Terahertz Electron. Abbreviated Journal Proc. 6-th Int. Conf. Terahertz Electron.
Volume Issue Pages 18-20
Keywords NbN HEB mixers
Abstract We describe a heterodyne receiver designed to operate in the partially transparent atmospheric windows centered on 680 and 830 GHz. The receiver incorporates a niobium nitride thin film, cooled to 4.2 K, as the phonon-cooled hot-electron mixer element. The double sideband receiver noise, measured over the frequency range 680-830 GHz, is typically 700-1300 K. The instantaneous output bandwidth of the receiver is 600 MHz. This receiver has recently been used at the SubMillimeter Telescope, jointly operated by the Steward Observatory and the Max Planck Institute for Radioastronomy, for observations of the neutral carbon and CO spectral lines at 810 GHz and at 806 and 691 GHz respectively. Laboratory measurements on a second mixer in the same test receiver have yielded extended high frequency performance to 1 THz.
Address Leeds, UK
Corporate Author Thesis
Publisher (down) IEEE Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 0-7803-4903-2 Medium
Area Expedition Conference IEEE Sixth International Conference on Terahertz Electronics Proceedings. THZ 98. (Cat. No.98EX171)
Notes Approved no
Call Number Serial 1581
Permanent link to this record
 

 
Author Cherednichenko, S.; Kollberg, E.; Angelov, I.; Drakinskiy, V.; Berg, T.; Merkel, H.
Title Effect of the direct detection effect on the HEB receiver sensitivity calibration Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 235-239
Keywords HEB, mixer, direct detection effect
Abstract We analyze the scale of the HEB receiver sensitivity calibration error caused by the so called “direct detection effect”. The effect comes from changing of the HEB parameters when whey face the calibration loads of different temperatures. We found that for HIFI Band 6 mixers (Herschel Space Observatory) the noise temperature error is of the order of 8% for 300K/77K loads (lab receiver) and 2.5% for 100K/10K loads (in HIFI). Using different approach we also predict that with an isolator between the mixer and the low noise amplifiers the error can be much smaller.
Address
Corporate Author Thesis
Publisher (down) Place of Publication Göteborg, Sweden Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 360
Permanent link to this record
 

 
Author Meledin, D.; Pantaleev, M.; Pavolotsky, A.; Risacher, C.; Belitsky, V.; Drakinskiy, V.; Cherednichenko, S.
Title Balanced waveguide HEB mixer for APEX 1.3 THz receiver Type Conference Article
Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher (down) Place of Publication Göteborg, Sweden Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ wg_balanced Serial 362
Permanent link to this record