|   | 
Details
   web
Records
Author Karasik, B. S.; Elantiev, A. I.
Title Noise temperature limit of a superconducting hot-electron bolometer mixer Type Journal Article
Year 1996 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 68 Issue 6 Pages 853-855
Keywords HEB mixer noise temperature, Johnson noise, thermal fluctuation noise, noise bandwidth
Abstract
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 260
Permanent link to this record
 

 
Author Karasik, B. S.; Il'in, K. S.; Pechen, E. V.; Krasnosvobodtsev, S. I.
Title Diffusion cooling mechanism in a hot-electron NbC microbolometer mixer Type Journal Article
Year 1996 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 68 Issue 16 Pages 2285-2287
Keywords HEB mixer, diffusion cooling channel, diffusion channel
Abstract
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 262
Permanent link to this record
 

 
Author Semenov, Alexei; Richter, Heiko; Smirnov, Konstantin; Voronov, Boris; Gol'tsman, Gregory; Hübers, Heinz-Wilhelm
Title The development of terahertz superconducting hot-electron bolometric mixers Type Journal Article
Year 2004 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 17 Issue 5 Pages 436-439
Keywords NbN HEB mixers
Abstract We present recent advances in the development of NbN hot-electron bolometric (HEB) mixers for flying terahertz heterodyne receivers. Three important issues have been addressed: the quality of the source NbN films, the effect of the bolometer size on the spectral properties of different planar feed antennas, and the local oscillator (LO) power required for optimal operation of the mixer. Studies of the NbN films with an atomic force microscope indicated a surface structure that may affect the performance of the smallest mixers. Measured spectral gain and noise temperature suggest that at frequencies above 2.5 THz the spiral feed provides better overall performance than the double-slot feed. Direct measurements of the optimal LO power support earlier estimates made in the framework of the uniform mixer model.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 357
Permanent link to this record
 

 
Author Ekstörm, H.; Kollberg, E.; Yagoubov, P.; Gol'tsman, G.; Gershenzon, E.; Yngvesson, S.
Title Gain and noise bandwidth of NbN hot-electron bolometric mixers Type Journal Article
Year 1997 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 70 Issue 24 Pages 3296-3298
Keywords NbN HEB mixers, conversion loss, conversion gain, U-factor technique
Abstract We have measured the noise performance and gain bandwidth of 35 Å thin NbN hot-electron mixers integrated with spiral antennas on silicon substrate lenses at 620 GHz. The best double-sideband receiver noise temperature is less than 1300 K with a 3 dB bandwidth of ≈5 GHz. The gain bandwidth is 3.2 GHz. The mixer output noise dominated by thermal fluctuations is 50 K, and the intrinsic conversion gain is about −12 dB. Without mismatch losses and excluding the loss from the beamsplitter, we expect to achieve a receiver noise temperature of less than 700 K.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 279
Permanent link to this record
 

 
Author Sobolewski, R.; Verevkin, A.; Gol'tsman, G.N.; Lipatov, A.; Wilsher, K.
Title Ultrafast superconducting single-photon optical detectors and their applications Type Journal Article
Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 13 Issue 2 Pages 1151-1157
Keywords NbN SSPD, SNSPD
Abstract We present a new class of ultrafast single-photon detectors for counting both visible and infrared photons. The detection mechanism is based on photon-induced hotspot formation, which forces the supercurrent redistribution and leads to the appearance of a transient resistive barrier across an ultrathin, submicrometer-width, superconducting stripe. The devices were fabricated from 3.5-nm- and 10-nm-thick NbN films, patterned into <200-nm-wide stripes in the 4 /spl times/ 4-/spl mu/m/sup 2/ or 10 /spl times/ 10-/spl mu/m/sup 2/ meander-type geometry, and operated at 4.2 K, well below the NbN critical temperature (T/sub c/=10-11 K). Continuous-wave and pulsed-laser optical sources in the 400-nm-to 3500-nm-wavelength range were used to determine the detector performance in the photon-counting mode. Experimental quantum efficiency was found to exponentially depend on the photon wavelength, and for our best, 3.5-nm-thick, 100-/spl mu/m/sup 2/-area devices varied from >10% for 405-nm radiation to 3.5% for 1550-nm photons. The detector response time and jitter were /spl sim/100 ps and 35 ps, respectively, and were acquisition system limited. The dark counts were below 0.01 per second at optimal biasing. In terms of the counting rate, jitter, and dark counts, the NbN single-photon detectors significantly outperform their semiconductor counterparts. Already-identified applications for our devices range from noncontact testing of semiconductor CMOS VLSI circuits to free-space quantum cryptography and communications.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 509
Permanent link to this record