|   | 
Details
   web
Records
Author Korneev, A.; Korneeva, Y.; Florya, I.; Voronov, B.; Goltsman, G.
Title NbN nanowire superconducting single-photon detector for mid-infrared Type Journal Article
Year 2012 Publication Phys. Procedia Abbreviated Journal Phys. Procedia
Volume 36 Issue Pages 72-76
Keywords NbN SSPD, SNSPD
Abstract Superconducting single-photon detectors (SSPD) is typically 100 nm-wide supercondiucting strip in a shape of meander made of 4-nm-thick film. To reduce response time and increase voltage response a parallel connection of the strips was proposed. Recently we demonstrated that reduction of the strip width improves the quantum effciency of such a detector at wavelengths longer than 1.5 μm. Being encourage by this progress in quantum effciency we improved the fabrication process and made parallel-wire SSPD with 40-nm-wide strips covering total area of 10 μm x 10 μm. In this paper we present the results of the characterization of such a parallel-wire SSPD at 10.6 μm wavelength and demonstrate linear dependence of the count rate on the light power as it should be in case of single-photon response.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1875-3892 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1382
Permanent link to this record
 

 
Author Goltsman, G. N.; Korneev, A. A.; Finkel, M. I.; Divochiy, A. V.; Florya, I. N.; Korneeva, Y. P.; Tarkhov, M. A.; Ryabchun, S. A.; Tretyakov, I. V.; Maslennikov, S. N.; Kaurova, N. S.; Chulkova, G. M.; Voronov, B. M.
Title Superconducting hot-electron bolometer as THz mixer, direct detector and IR single-photon counter Type Abstract
Year 2010 Publication 35th Int. Conf. Infrared, Millimeter, and Terahertz Waves Abbreviated Journal
Volume Issue Pages 1-1
Keywords SSPD, SNSPD, HEB
Abstract We present a new generation of superconducting single-photon detectors (SSPDs) and hot-electron superconducting sensors with record characteristic for many terahertz and optical applications.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2162-2027 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ sasha @ goltsman2010superconducting Serial 1028
Permanent link to this record
 

 
Author Elmanova, A.; An, P.; Kovalyuk, V.; Golikov, A.; Elmanov, I.; Goltsman, G.
Title Study of silicon nitride O-ring resonator for gas-sensing applications Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012124
Keywords silicon nitride O-ring resonator, ORR
Abstract In this work, we experimentally studied the influence of different gaseous surroundings on silicon nitride O-ring resonator transmission. We compared the obtained results with numerical calculations and theoretical analysis and found a good agreement between them. Our results have a great potential for gas sensing applications, where a compact footprint and high efficiency are desired simultaneously.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1176
Permanent link to this record
 

 
Author Korneev, A. A.; Divochiy, A. V.; Vakhtomin, Yu. B.; Korneeva, Yu. P.; Larionov, P. A.; Manova, N. N.; Florya, I. N.; Trifonov, A. V.; Voronov, B. M.; Smirnov, K. V.; Semenov, A. V.; Chulkova, G. M.; Goltsman, G. N.
Title IR single-photon receiver based on ultrathin NbN superconducting film Type Journal Article
Year 2013 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.
Volume Issue 5 Pages
Keywords SSPD, SNSPD
Abstract We present our recent results in research and development of superconducting single-photon detector (SSPD). We achieved the following performance improvement: first, we developed and characterized SSPD integrated in optical cavity and enabling its illumination from the face side, not through the substrate, second, we improved the quantum efficiency of the SSPD at around 3 μm wavelength by reduction of the strip width to 40 nm, and, finally, we improved the detection efficiency of the SSPD-based single-photon receiver system up to 20% at 1550 nm and extended its wavelength range beyond 1800 nm by the usage of the fluoride ZBLAN fibres.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 8 pages Approved no
Call Number RPLAB @ sasha @ korneevir Serial 1043
Permanent link to this record
 

 
Author Zhang, W.; Miao, W.; Zhong, J. Q.; Shi, S. C.; Hayton, D. J.; Vercruyssen, N.; Gao, J. R.; Goltsman, G. N.
Title Temperature dependence of superconducting hot electron bolometers Type Conference Article
Year 2013 Publication Not published results: 24th international symposium on space terahertz technology Abbreviated Journal
Volume Issue Pages
Keywords HEB
Abstract
Address Groningen,The Netherlands
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1067
Permanent link to this record
 

 
Author Angeluts, A. A.; Bezotosnyi, V. V.; Cheshev, E. A.; Goltsman, G. N.; Finkel, M. I.; Seliverstov, S. V.; Evdokimov, M. N.; Gorbunkov, M. V.; Kitaeva, G. Kh.; Koromyslov, A. L.; Kostryukov, P. V.; Krivonos, M. S.; Lobanov, Yu. V.; Shkurinov, A. P.; Sarkisov, S. Yu.; Tunkin, V. G.
Title Compact 1.64 THz source based on a dual-wavelength diode end-pumped Nd:YLF laser with a nearly semiconfocal cavity Type Journal Article
Year 2014 Publication Laser Phys. Lett. Abbreviated Journal
Volume 11 Issue 1 Pages 015004 (1 to 4)
Keywords HEB applications, HEB detector applications, short THz pulses detection
Abstract We describe a compact dual-wavelength (1.047 and 1.053 μm) diode end-pumped Q-switched Nd:YLE laser source which has a number of applications in demand. In order to achieve its dual-wavelength operation it is suggested for the first time to use essentially nonmonotonous dependences of the threshold pump powers at these wavelengths on the cavity length in the region of the cavity semiconfocal configuration under a radius of the pump beam smaller than the radius of the zero Gaussian mode. Here we demonstrate one of the most interesting applications for this laser: difference frequency generation in a GaSe crystal at a frequency of 1.64 THz. A superconducting hot-electron bolometer is used to detect the THz power generated and to measure its pulse characteristics.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1076
Permanent link to this record
 

 
Author Shcherbatenko, M.; Tretyakov, I.; Lobanov, Yu.; Maslennikov, S. N.; Kaurova, N.; Finkel, M.; Voronov, B.; Goltsman, G.; Klapwijk, T. M.
Title Nonequilibrium interpretation of DC properties of NbN superconducting hot electron bolometers Type Journal Article
Year 2016 Publication Appl. Phys. Lett. Abbreviated Journal
Volume 109 Issue 13 Pages 132602
Keywords HEB mixer, contacts
Abstract We present a physically consistent interpretation of the dc electrical properties of niobiumnitride (NbN)-based superconducting hot-electron bolometer mixers, using concepts of nonequilibrium superconductivity. Through this, we clarify what physical information can be extracted from the resistive transition and the dc current-voltage characteristics, measured at suitably chosen temperatures, and relevant for device characterization and optimization. We point out that the intrinsic spatial variation of the electronic properties of disordered superconductors, such as NbN, leads to a variation from device to device.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1107
Permanent link to this record
 

 
Author Vetter, A.; Ferrari, S.; Rath, P.; Alaee, R.; Kahl, O.; Kovalyuk, V.; Diewald, S.; Goltsman, G. N.; Korneev, A.; Rockstuhl, C.; Pernice, W. H. P.
Title Cavity-enhanced and ultrafast superconducting single-photon detectors Type Journal Article
Year 2016 Publication Nano Lett. Abbreviated Journal Nano Lett.
Volume 16 Issue 11 Pages 7085-7092
Keywords SSPD; SNSPD; multiphoton detection; nanophotonic circuit; photonic crystal cavity
Abstract Ultrafast single-photon detectors with high efficiency are of utmost importance for many applications in the context of integrated quantum photonic circuits. Detectors based on superconductor nanowires attached to optical waveguides are particularly appealing for this purpose. However, their speed is limited because the required high absorption efficiency necessitates long nanowires deposited on top of the waveguide. This enhances the kinetic inductance and makes the detectors slow. Here, we solve this problem by aligning the nanowire, contrary to usual choice, perpendicular to the waveguide to realize devices with a length below 1 mum. By integrating the nanowire into a photonic crystal cavity, we recover high absorption efficiency, thus enhancing the detection efficiency by more than an order of magnitude. Our cavity enhanced superconducting nanowire detectors are fully embedded in silicon nanophotonic circuits and efficiently detect single photons at telecom wavelengths. The detectors possess subnanosecond decay ( approximately 120 ps) and recovery times ( approximately 510 ps) and thus show potential for GHz count rates at low timing jitter ( approximately 32 ps). The small absorption volume allows efficient threshold multiphoton detection.
Address Institute of Physics, University of Munster , 48149 Munster, Germany
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1530-6984 ISBN Medium
Area Expedition Conference
Notes PMID:27759401 Approved no
Call Number Serial 1208
Permanent link to this record
 

 
Author Pyatkov, F.; Khasminskaya, S.; Kovalyuk, V.; Hennrich, F.; Kappes, M. M.; Goltsman, G. N.; Pernice, W. H. P.; Krupke, R.
Title Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers Type Journal Article
Year 2017 Publication Beilstein J. Nanotechnol. Abbreviated Journal Beilstein J. Nanotechnol.
Volume 8 Issue Pages 38-44
Keywords carbon nanotubes; CNT; infrared; integrated optics devices; nanomaterials
Abstract Carbon nanotubes (CNTs) have recently been integrated into optical waveguides and operated as electrically-driven light emitters under constant electrical bias. Such devices are of interest for the conversion of fast electrical signals into optical ones within a nanophotonic circuit. Here, we demonstrate that waveguide-integrated single-walled CNTs are promising high-speed transducers for light-pulse generation in the gigahertz range. Using a scalable fabrication approach we realize hybrid CNT-based nanophotonic devices, which generate optical pulse trains in the range from 200 kHz to 2 GHz with decay times below 80 ps. Our results illustrate the potential of CNTs for hybrid optoelectronic systems and nanoscale on-chip light sources.
Address Department of Materials and Earth Sciences, Technische Universitat Darmstadt, Darmstadt 64287, Germany
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2190-4286 ISBN Medium
Area Expedition Conference
Notes PMID:28144563; PMCID:PMC5238692 Approved no
Call Number RPLAB @ kovalyuk @ Serial 1109
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Grimes, P.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G.
Title Development of A Silicon Membrane-based Multi-pixel Hot Electron Bolometer Receiver Type Conference Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 6
Keywords Multi-pixel, HEB, silicon-on-insulator, horn array
Abstract We report on the development of a multi-pixel

Hot Electron Bolometer (HEB) receiver fabricated using

silicon membrane technology. The receiver comprises a

2 × 2 array of four HEB mixers, fabricated on a single

chip. The HEB mixer chip is based on a superconducting

NbN thin film deposited on top of the silicon-on-insulator

(SOI) substrate. The thicknesses of the device layer and

handling layer of the SOI substrate are 20 μm and 300 μm

respectively. The thickness of the device layer is chosen

such that it corresponds to a quarter-wave in silicon at

1.35 THz. The HEB mixer is integrated with a bow-tie

antenna structure, in turn designed for coupling to a

circular waveguide,
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1111
Permanent link to this record