toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Dube, I.; Jiménez, D.; Fedorov, G.; Boyd, A.; Gayduchenko, I.; Paranjape, M.; Barbara, P. url  doi
openurl 
  Title Understanding the electrical response and sensing mechanism of carbon-nanotube-based gas sensors Type Journal Article
  Year 2015 Publication Carbon Abbreviated Journal Carbon  
  Volume 87 Issue Pages 330-337  
  Keywords carbon nanotubes, CNT detectors, field effect transistors, FET  
  Abstract Gas sensors based on carbon nanotube field effect transistors (CNFETs) have outstanding sensitivity compared to existing technologies. However, the lack of understanding of the sensing mechanism has greatly hindered progress on calibration standards and customization of these nano-sensors. Calibration requires identifying fundamental transistor parameters and establishing how they vary in the presence of a gas. This work focuses on modeling the electrical response of CNTFETs in the presence of oxidizing (NO2) and reducing (NH3) gases and determining how the transistor characteristics are affected by gas-induced changes of contact properties, such as the Schottky barrier height and width, and by the doping level of the nanotube. From the theoretical fits of the experimental transfer characteristics at different concentrations of NO2 and NH3, we find that the CNTFET response can be modeled by introducing changes in the Schottky barrier height. These changes are directly related to the changes in the metal work function of the electrodes that we determine experimentally, independently, with a Kelvin probe. Our analysis yields a direct correlation between the ON – current and the changes in the electrode metal work function. Doping due to molecules adsorbed at the carbon-nanotube/metal interface also affects the transfer characteristics.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0008-6223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1778  
Permanent link to this record
 

 
Author Akhmadishina, K. F.; Bobrinetskiy, I. I.; Komarov, I. A.; Malovichko, A. M.; Nevolin, V. K.; Fedorov, G. E.; Golovin, A. V.; Zalevskiy, A. O.; Aidarkhanov, R. D. url  doi
openurl 
  Title Fast-response biological sensors based on single-layer carbon nanotubes modified with specific aptamers Type Journal Article
  Year 2015 Publication Semicond. Abbreviated Journal Semicond.  
  Volume 49 Issue 13 Pages 1749-1753  
  Keywords carbon nanotubes, CNT detectors  
  Abstract The possibility of the fabrication of a fast-response biological sensor based on a composite of single-layer carbon nanotubes and aptamers for the specific detection of proteins is shown. The effect of modification of the surface of the carbon nanotubes on the selectivity and sensitivity of the sensors is investigated. It is shown that carboxylated nanotubes have a better selectivity for detecting thrombin.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7826 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1783  
Permanent link to this record
 

 
Author Verevkin, A.; Slysz, W.; Pearlman, A.; Zhang, J.; Sobolewski, R.; Okunev, O.; Korneev, A.; Kouminov, P.; Smirnov, K.; Chulkova, G.; Gol’tsman, G. N.; Currie, M. url  openurl
  Title Real-time GHz-rate counting of infrared photons using nanostructured NbN superconducting detectors Type Conference Article
  Year 2003 Publication CLEO/QELS Abbreviated Journal CLEO/QELS  
  Volume Issue Pages CThM8  
  Keywords NbN SSPD; SNSPD; Infrared; Quantum detectors; Detectors; Photon counting; Quantum communications; Quantum cryptography; Single photon detectors; Superconductors  
  Abstract We demonstrate that our ultrathin, nanometer-width NbN superconducting single-photon detectors are capable of above 1-GHz-frequency, real-time counting of near-infrared photons. The measured system jitter of the detector is below 15 ps.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference  
  Notes Approved no  
  Call Number Serial 1517  
Permanent link to this record
 

 
Author Marsili, F.; Bitauld, D.; Divochiy, A.; Gaggero, A.; Leoni, R.; Mattioli, F.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Gol’tsman, G.; Lagoudakis, K.G.; Benkahoul, M.; Lévy, F.; Fiore, A. url  isbn
openurl 
  Title Superconducting nanowire photon number resolving detector at telecom wavelength Type Conference Article
  Year 2008 Publication CLEO/QELS Abbreviated Journal CLEO/QELS  
  Volume Issue Pages Qmj1 (1 to 2)  
  Keywords PNR SSPD; SNSPD; Detectors; Infrared; Low light level; Diode lasers; Photons; Scanning electron microscopy; Superconductors; Ti:sapphire lasers  
  Abstract We demonstrate a photon-number-resolving (PNR) detector, based on parallel superconducting nanowires, capable of resolving up to 5 photons in the telecommunication wavelength range, with sensitivity and speed far exceeding existing approaches.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-55752-859-9 Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Marsili:08 Serial 1243  
Permanent link to this record
 

 
Author Minaeva, O.; Fraine, A.; Korneev, A.; Divochiy, A.; Goltsman, G.; Sergienko, A. url  doi
openurl 
  Title High resolution optical time-domain reflectometry using superconducting single-photon detectors Type Conference Article
  Year 2012 Publication Frontiers in Opt. 2012/Laser Sci. XXVIII Abbreviated Journal Frontiers in Opt. 2012/Laser Sci. XXVIII  
  Volume Issue Pages Fw3a.39  
  Keywords SSPD, SNSPD, Photodetectors; Fiber characterization; Light beams; Optical time domain reflectometry; Photon counting; Single mode fibers; Single photon detectors; Superconductors  
  Abstract We discuss the advantages and limitations of single-photon optical time-domain reflectometry with superconducting single-photon detectors. The higher two-point resolution can be achieved due to superior timing performance of SSPDs in comparison with InGaAs APDs.  
  Address  
  Corporate Author Thesis  
  Publisher (up) Optical Society of America Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1237  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: