|   | 
Details
   web
Records
Author Milostnaya, I.; Korneev, A.; Rubtsova, I.; Seleznev, V.; Minaeva, O.; Chulkova, G.; Okunev, O.; Voronov, B.; Smirnov, K.; Gol'tsman, G.; Slysz, W.; Wegrzecki, M.; Guziewicz, M.; Bar, J.; Gorska, M.; Pearlman, A.; Kitaygorsky, J.; Cross, A.; Sobolewski, R.
Title Superconducting single-photon detectors designed for operation at 1.55-µm telecommunication wavelength Type Conference Article
Year 2006 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 43 Issue Pages 1334-1337
Keywords NbN SSPD, SNSPD
Abstract We report on our progress in development of superconducting single-photon detectors (SSPDs), specifically designed for secure high-speed quantum communications. The SSPDs consist of NbN-based meander nanostructures and operate at liquid helium temperatures. In general, our devices are capable of GHz-rate photon counting in a spectral range from visible light to mid-infrared. The device jitter is 18 ps and dark counts can reach negligibly small levels. The quantum efficiency (QE) of our best SSPDs for visible-light photons approaches a saturation level of ~30-40%, which is limited by the NbN film absorption. For the infrared range (1.55µm), QE is ~6% at 4.2 K, but it can be significantly improved by reduction of the operation temperature to the 2-K level, when QE reaches ~20% for 1.55-µm photons. In order to further enhance the SSPD efficiency at the wavelength of 1.55 µm, we have integrated our detectors with optical cavities, aiming to increase the effective interaction of the photon with the superconducting meander and, therefore, increase the QE. A successful effort was made to fabricate an advanced SSPD structure with an optical microcavity optimized for absorption of 1.55 µm photons. The design consisted of a quarter-wave dielectric layer, combined with a metallic mirror. Early tests performed on relatively low-QE devices integrated with microcavities, showed that the QE value at the resonator maximum (1.55-µm wavelength) was of the factor 3-to-4 higher than that for a nonresonant SSPD. Independently, we have successfully coupled our SSPDs to single-mode optical fibers. The completed receivers, inserted into a liquid-helium transport dewar, reached ~1% system QE for 1.55 µm photons. The SSPD receivers that are fiber-coupled and, simultaneously, integrated with resonators are expected to be the ultimate photon counters for optical quantum communications.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1450
Permanent link to this record
 

 
Author Rosfjord, K. M.; Yang, J. K. W.; Dauler, E. A.; Anant, V.; Berggren, K. K.; Kerman, A. J.; Voronov, B. M.; Gol’tsman, G. N.
Title Increased detection efficiencies of nanowire single-photon detectors by integration of an optical cavity and anti-reflection coating Type Conference Article
Year 2006 Publication CLEO/QELS Abbreviated Journal CLEO/QELS
Volume Issue Pages JTuF2 (1 to 2)
Keywords SSPD, SNSPD
Abstract We fabricate and test superconducting NbN-nanowire single-photon detectors with an integrated optical cavity and anti-reflection coating. We design the cavity and coating such as to maximize absorption in the NbN film of the detector.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference
Notes Approved no
Call Number Serial 1452
Permanent link to this record
 

 
Author Kerman, A. J.; Dauler, E. A.; Keicher, W. E.; Yang, J. K. W.; Berggren, K. K.; Gol’tsman, G.; Voronov, B.
Title Kinetic-inductance-limited reset time of superconducting nanowire photon counters Type Journal Article
Year 2006 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 88 Issue 11 Pages 111116 (1 to 3)
Keywords NbN SSPD, SNSPD
Abstract We investigate the recovery of superconducting NbN-nanowire photon counters after detection of an optical pulse at a wavelength of 1550nm, and present a model that quantitatively accounts for our observations. The reset time is found to be limited by the large kinetic inductance of these nanowires, which forces a tradeoff between counting rate and either detection efficiency or active area. Devices of usable size and high detection efficiency are found to have reset times orders of magnitude longer than their intrinsic photoresponse time.

The authors acknowledge D. Oates and W. Oliver (MIT Lincoln Laboratory), S.W. Nam, A. Miller, and R. Hadfield (NIST) and R. Sobolewski, A. Pearlman, and A. Verevkin (University of Rochester) for helpful discussions and technical assistance. This work made use of MIT’s shared scanning-electron-beam-lithography facility in the Research Laboratory of Electronics. This work is sponsored by the United States Air Force under Air Force Contract No. FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1453
Permanent link to this record
 

 
Author Kitaygorsky, Jennifer; Komissarov, I.; Jukna, A.; Sobolewski, Roman; Minaeva, O.; Kaurova, N.; Korneev, A.; Voronov, B.; Milostnaya, I.; Gol'Tsman, Gregory
Title Nanosecond, transient resistive state in two-dimensional superconducting stripes Type Abstract
Year 2006 Publication Proc. APS March Meeting Abbreviated Journal Proc. APS March Meeting
Volume Issue Pages H38.13
Keywords NbN stripes
Abstract We have observed, nanosecond-in-duration, transient voltage pulses, generated across two-dimensional (2-D) NbN stripes (width: 100--500 nm; thickness: 3.5--10 nm) of various lengths (1--500 μm), when the wires were completely isolated from the outside world, biased at currents close to the critical current, and kept at temperatures below the mean-field critical temperature Tco. In 2-D superconducting films, at temperatures below the Kosterlitz-Thouless transition, all vortices are bound and the resistance is zero. However, these vortices can get unbound when a large enough transport current is applied. The latter results in a transient resistive state, which manifests itself as spontaneous, 2.5--8-ns-long voltage pulses with the amplitude corresponding to the unbinding potential of a vortex pair. In our 100-nm-wide stripes, we have also observed the formation of phase slip centers (PSCs) at temperatures close to Tco, and a mixture of PSCs and unbound vortex-antivortex pairs at low temperatures.
Address Baltimore, MD
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1454
Permanent link to this record
 

 
Author Bell, Matthew; Sergeev, Andrei; Goltsman, Gregory; Bird, Jonathan; Verevkin, Aleksandr
Title Transition-edge sensors based on superconducting nanowires Type Abstract
Year 2006 Publication Proc. APS March Meeting Abbreviated Journal Proc. APS March Meeting
Volume Issue Pages B38.00001
Keywords NbN nanowire TES
Abstract We present our experimental study of superconducting NbN nanowire-based sensor. The responsivity of the sensor is strongly affected by the superconducting transition width of the nanostructure, which, in turn, is determined by the phase slip centers (PCSs) dynamics. The fluctuations and noise properties of the sensor are also discussed, as well as the devices' behavior at high magnetic fields. The ultimate performance of the sensor and prospects of the devices will be discussed, as well.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1455
Permanent link to this record