|   | 
Details
   web
Records
Author Pütz, P.; Honingh, C. E.; Jacobs, K.; Justen, M.; Schultz, M.; Stutzki, J.
Title Terahertz hot electron bolometer waveguide mixers for GREAT Type Journal Article
Year 2012 Publication Astron. Astrophys. Abbreviated Journal A&A
Volume 542 Issue Pages L2
Keywords HEB mixer, applications
Abstract Context. Supplementing the publications based on the first-light observations with the German REceiver for Astronomy at Terahertz frequencies (GREAT) on SOFIA, we present background information on the underlying heterodyne detector technology. This Letter complements the GREAT instrument Letter and focuses on the mixers itself.

Aims. We describe the superconducting hot electron bolometer (HEB) detectors that are used as frequency mixers in the L1 (1400 GHz), L2 (1900 GHz), and M (2500 GHz) channels of GREAT. Measured performance of the detectors is presented and background information on their operation in GREAT is given.

Methods. Our mixer units are waveguide-based and couple to free-space radiation via a feedhorn antenna. The HEB mixers are designed, fabricated, characterized, and flight-qualified in-house. We are able to use the full intermediate frequency bandwidth of the mixers using silicon-germanium multi-octave cryogenic low-noise amplifiers with very low input return loss.

Results. Superconducting HEB mixers have proven to be practical and sensitive detectors for high-resolution THz frequency spectroscopy on SOFIA. We show that our niobium-titanium-nitride (NbTiN) material HEBs on silicon nitride (SiN) membrane substrates have an intermediate frequency (IF) noise roll-off frequency above 2.8 GHz, which does not limit the current receiver IF bandwidth. Our mixer technology development efforts culminate in the first successful operation of a waveguide-based HEB mixer at 2.5 THz and deployment for radioastronomy. A significant contribution to the success of GREAT is made by technological development, thorough characterization and performance optimization of the mixer and its IF interface for receiver operation on SOFIA. In particular, the development of an optimized mixer IF interface contributes to the low passband ripple and excellent stability, which GREAT demonstrated during its initial successful astronomical observation runs.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 907
Permanent link to this record
 

 
Author Cherednichenko, Sergey; Drakinskiy, Vladimir; Berg, Therese; Khosropanah, Pourya; Kollberg, Erik
Title Hot-electron bolometer terahertz mixers for the Herschel Space Observatory Type Journal Article
Year 2008 Publication Review of Scientific Instruments Abbreviated Journal Rev. Sci. Instrum.
Volume 79 Issue Pages 034501
Keywords HEB mixer, HEB detector, HEB direct detector, applications
Abstract We report on low noise terahertz mixers(1.4–1.9THz) developed for the heterodyne spectrometer onboard the Herschel Space Observatory. The mixers employ double slot antenna integrated superconducting hot-electron bolometers (HEBs) made of thin NbN films. The mixer performance was characterized in terms of detection sensitivity across the entire rf band by using a Fourier transform spectrometer (from 0.5to2.5THz, with 30GHz resolution) and also by measuring the mixernoise temperature at a limited number of discrete frequencies. The lowest mixernoise temperature recorded was 750K [double sideband (DSB)] at 1.6THz and 950KDSB at 1.9THz local oscillator (LO) frequencies. Averaged across the intermediate frequency band of 2.4–4.8GHz, the mixernoise temperature was 1100KDSB at 1.6THz and 1450KDSB at 1.9THz LO frequencies. The HEB heterodyne receiver stability has been analyzed and compared to the HEB stability in the direct detection mode. The optimal local oscillator power was determined and found to be in a 200–500nW range.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 908
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Gol'tsman, G.; Svechnikov, S.; Gershenzon, E.
Title Noise temperature and local oscillator power requirement of NbN phonon-cooled hot electron bolometric mixers at terahertz frequencies Type Journal Article
Year 1998 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 73 Issue 19 Pages 2814-2816
Keywords NbN HEB mixers, noise temperature, local oscillator power
Abstract In this letter, the noise performance of NbN-based phonon-cooled hot electron bolometric quasioptical mixers is investigated in the 0.55–1.1 THz frequency range. The best results of the double-sideband <cd><2018>DSB<cd><2019> noise temperature are: 500 K at 640 GHz, 600 K at 750 GHz, 850 K at 910 GHz, and 1250 K at 1.1 THz. The water vapor in the signal path causes significant contribution to the measured receiver noise temperature around 1.1 THz. The devices are made from 3-nm-thick NbN film on high-resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are typically 0.2Ï«2 um. The amount of local oscillator power absorbed in the bolometer is less than 100 nW.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 911
Permanent link to this record
 

 
Author Klapwijk, T. M.; Barends, R.; Gao, J. R.; Hajenius, M.; Baselmans, J. J. A.
Title Improved superconducting hot-electron bolometer devices for the THz range Type Conference Article
Year 2004 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 5498 Issue Pages 129-139
Keywords HEB mixer distributed model, numerical model
Abstract Improved and reproducible heterodyne mixing (noise temperatures of 950 K at 2.5 THz) has been realized with NbN based hot-electron superconducting devices with low contact resistances. A distributed temperature numerical model of the NbN bridge, based on a local electron and a phonon temperature, has been used to understand the physical conditions during the mixing process. We find that the mixing is predominantly due to the exponential rise of the local resistivity as a function of electron temperature.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Invited talk, Recommended by Klapwijk Approved no
Call Number Serial 912
Permanent link to this record
 

 
Author Phillips, T. G.; Jefferts, K. B.
Title A low temperature bolometer heterodyne receiver for Millimeter wave astronomy Type Journal Article
Year 1973 Publication Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.
Volume 44 Issue 8 Pages 1009-1014
Keywords InSb HEB mixer
Abstract Liquid helium cooled InSb hot electronbolometers are used in a balanced mixer configuration as detectors for an imagelessmicrowave receiver. The system is designed for mounting at the prime focus of the National Radio Astronomy Observatory (NRAO) 11 m antenna at Kitt Peak, Arizona, and is suitable for the study of rotational line spectra of interstellar gas molecules. Currently the operating frequency is in the 90–140 GHz band where the double sideband system noise temperature is 250 K.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk Approved no
Call Number Serial 927
Permanent link to this record