|   | 
Details
   web
Records
Author Semenov, A. V.; Devyatov, I. A.; Korneev, A. A.; Smirnov, K. V.; Goltsman, G. N.; Melnikov, A. P.
Title Derivation of expression for thermodynamic potential of “dirty” superconductor Type Journal Article
Year 2012 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.
Volume Issue 4 Pages
Keywords dirty superconductor, Usadel theory, thermodynamic potential
Abstract We derive a formula for thermodynamic potential of dirty superconductor which express it via isotropic quasiclassical Green functions of Usadel theory. Our result allows unify description of dynamic processes and fluctuations in superconducting nano-electronic devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 7 pages Approved no
Call Number Serial (down) 1824
Permanent link to this record
 

 
Author Korneeva, Y. P.; Manova, N. N.; Dryazgov, M. A.; Simonov, N. O.; Zolotov, P. I.; Korneev, A. A.
Title Influence of sheet resistance and strip width on the detection efficiency saturation in micron-wide superconducting strips and large-area meanders Type Journal Article
Year 2021 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 34 Issue 8 Pages 084001
Keywords NbN SSPD, SMSPD
Abstract We report our study of detection efficiency (DE) saturation in wavelength range 400 – 1550 nm for the NbN Superconducting Microstrip Single-Photon Detectors (SMSPD) featuring the strip width up to 3 μm. We observe an expected decrease of the $DE$ saturation plateau with the increase of photon wavelength and decrease of film sheet resistance. At 1.7 K temperature DE saturation can be clearly observed at 1550 nm wavelength in strip with the width up to 2 μm when sheet resistance of the film is above 630Ω/sq. In such strips the length of the saturation plateau almost does not depend on the strip width. We used these films to make meander-shaped detectors with the light sensitive area from 20×20μm2 to a circle 50 μm in diameter. In the latter case, the detector with the strip width of 0.49 μm demonstrates saturation of DE up to 1064 nm wavelength. Although DE at 1310 and 1550 nm is not saturated, it is as high as 60%. The response time is limited by the kinetic inductance and equals to 20 ns(by 1/e decay), timing jitter is 44 ps. When coupled to multi-mode fibre large-area meanders demonstrate significantly higher dark count rate which we attribute to thermal background photons, thus advanced filtering technique would be required for practical applications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (down) 1793
Permanent link to this record
 

 
Author Korneeva, Y. P.; Manova, N. N.; Florya, I. N.; Mikhailov, M. Y.; Dobrovolskiy, O. V.; Korneev, A. A.; Vodolazov, D. Y.
Title Different single-photon response of wide and narrow superconducting MoxSi1−x strips Type Journal Article
Year 2020 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 13 Issue 2 Pages 024011 (1 to 7)
Keywords MoSi SSPD, SNSPD
Abstract The photon count rate (PCR) of superconducting single-photon detectors made of MoxSi1−x films shaped as a 2-μm-wide strip and a 115-nm-wide meander strip line is studied experimentally as a function of the dc biasing current at different values of the perpendicular magnetic field. For the wide strip, a crossover current Icross is observed, below which the PCR increases with an increasing magnetic field and above which it decreases. This behavior contrasts with the narrow MoxSi1−x meander, for which no crossover current is observed, thus suggesting different photon-detection mechanisms in the wide and narrow strips. Namely, we argue that in the wide strip the absorbed photon destroys superconductivity locally via the vortex-antivortex mechanism for the emergence of resistance, while in the narrow meander superconductivity is destroyed across the whole strip line, forming a hot belt. Accordingly, the different photon-detection mechanisms associated with vortices and the hot belt determine the qualitative difference in the dependence of the PCR on the magnetic field.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (down) 1790
Permanent link to this record
 

 
Author Shein, K. V.; Zarudneva, A. A.; Emel’yanova, V. O.; Logunova, M. A.; Chichkov, V. I.; Sobolev, A.S.; Zav’yalov, V. V.; Lehtinen, J. S.; Smirnov, E. O.; Korneeva, Y. P.; Korneev, A. A.; Arutyunov, K. Y.
Title Superconducting microstructures with high impedance Type Journal Article
Year 2020 Publication Phys. Solid State Abbreviated Journal Phys. Solid State
Volume 62 Issue 9 Pages 1539-1542
Keywords superconducting channels, SIS, inetic inductance, tunneling contacts, high impedance
Abstract The transport properties of two types of quasi-one-dimensional superconducting microstructures were investigated at ultra-low temperatures: the narrow channels close-packed in the shape of meander, and the chains of tunneling contacts “superconductor-insulator-superconductor.” Both types of the microstructures demonstrated high value of high-frequency impedance and-or the dynamic resistance. The study opens up potential for using of such structures as current stabilizing elements with zero dissipation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7834 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (down) 1789
Permanent link to this record
 

 
Author Vodolazov, D. Y.; Manova, N. N.; Korneeva, Y. P.; Korneev, A. A.
Title Timing jitter in NbN superconducting microstrip single-photon detector Type Journal Article
Year 2020 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 14 Issue 4 Pages 044041 (1 to 8)
Keywords NbN SSPD, SNSPD
Abstract We experimentally study timing jitter of single-photon detection by NbN superconducting strips with width w ranging from 190 nm to 3μm. We find that timing jitter of both narrow (190 nm) and micron-wide strips is about 40 ps at currents where internal detection efficiency η saturates and it is close to our instrumental jitter. We also calculate intrinsic timing jitter in wide strips using the modified time-dependent Ginzburg-Landau equation coupled with a two-temperature model. We find that with increasing width the intrinsic timing jitter increases and the effect is most considerable at currents where a rapid growth of η changes to saturation. We relate it with complicated vortex and antivortex dynamics, which depends on a photon’s absorption site across the strip and its width. The model also predicts that at current close to depairing current the intrinsic timing jitter of a wide strip could be about ℏ/kBTc (Tc is a critical temperature of superconductor), i.e., the same as for a narrow strip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (down) 1788
Permanent link to this record
 

 
Author Polyakova, M. I.; Korneev, A. A.; Semenov, A. V.
Title Comparison single- and double- spot detection efficiencies of SSPD based to MoSi and NbN films Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012146 (1 to 3)
Keywords NbN SSPD, SNSPD, MoSi
Abstract In this work, we present results of quantum detector tomography of superconducting single photon detector (SSPD) based on MoSi film, and compare them with previously reported data on NbN. We find that for both materials hot spot interaction length coincides with the strip width, and the dependence of single and double-spot detection efficiencies on bias current are compatible with sufficiently large hot-spot size, approaching the strip width.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (down) 1787
Permanent link to this record
 

 
Author Manova, N. N.; Simonov, N. O.; Korneeva, Y. P.; Korneev, A. A.
Title Developing of NbN films for superconducting microstrip single-photon detector Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012116 (1 to 5)
Keywords NbN SSPD, SNSPD, NbN films
Abstract We optimized NbN films on a Si substrate with a buffer SiO2 layer to produce superconducting microstrip single-photon detectors with saturated dependence of quantum efficiency (QE) versus normalized bias current. We varied thickness of films and observed the maximum QE saturation for device based on the thinner film with the lowest ratio RS300/RS20.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (down) 1786
Permanent link to this record
 

 
Author Dryazgov, M.; Semenov, A.; Manova, N.; Korneeva, Y.; Korneev, A.
Title Modelling of normal domain evolution after single-photon absorption of a superconducting strip of micron width Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012195 (1 to 4)
Keywords SSPD modelling, SNSPD
Abstract The present paper describes a modelling of normal domain evolution in superconducting strip of micron width using solving differential equations describing the temperature and current changes. The solving results are compared with experimental data. This comparison demonstrates the high accuracy of the model. In future, it is possible to employ this model for improvement of single photon detector based on micron-scale superconducting strips.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (down) 1785
Permanent link to this record
 

 
Author Korneev, A. A.
Title Superconducting NbN microstrip single-photon detectors Type Abstract
Year 2021 Publication Proc. Quantum Optics and Photon Counting Abbreviated Journal Proc. Quantum Optics and Photon Counting
Volume 11771 Issue Pages
Keywords NbN SSPD, SNSPD
Abstract Superconducting Single-Photon Detectors (SSPD) invented two decades ago have evolved to a mature technology and have become devices of choice in the advanced applications of quantum optics, such as quantum cryptography and optical quantum computing. In these applications SSPDs are coupled to single-mode fibers and feature almost unity detection efficiency, negligible dark counts, picosecond timing jitter and MHz photon count rate. Meanwhile, there are great many applications requiring coupling to multi-mode fibers or free space. ‘Classical’ SSPDs with 100-nm-wide superconducting strip and covering area of about 100 µm2 are not suitable for further scaling due to degradation of performance and low fabrication yield. Recently we have demonstrated single-photon counting in micron-wide superconducting bridges and strips. Here we present our approach to the realization of practical photon-counting detectors of large enough area to be efficiently coupled to multi-mode fibers or free space. The detector is either a meander or a spiral of 1-µm-wide strip covering an area of 50x50 µm2. Being operated at 1.7K temperature it demonstrates the saturated detection efficiency (i.e. limited by the absorption in the detector) up to 1550 nm wavelength, about 10 ns dead time and timing jitter in range 50-100 ps.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Prochazka, I.; Štefaňák, M.; Sobolewski, R.; Gábris, A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Quantum Optics and Photon Counting; SPIE Optics + Optoelectronics, 2021, Online Only
Notes Approved no
Call Number Serial (down) 1784
Permanent link to this record
 

 
Author Shcherbatenko, M.; Elezov, M.; Manova, N.; Sedykh, K.; Korneev, A.; Korneeva, Y.; Dryazgov, M.; Simonov, N.; Feimov, A.; Goltsman, G.; Sych, D.
Title Single-pixel camera with a large-area microstrip superconducting single photon detector on a multimode fiber Type Journal Article
Year 2021 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 118 Issue 18 Pages 181103
Keywords NbN SSPD, SNSPD
Abstract High sensitivity imaging at the level of single photons is an invaluable tool in many areas, ranging from microscopy to astronomy. However, development of single-photon sensitive detectors with high spatial resolution is very non-trivial. Here we employ the single-pixel imaging approach and demonstrate a proof-of-principle single-pixel single-photon imaging setup. We overcome the problem of low light gathering efficiency by developing a large-area microstrip superconducting single photon detector coupled to a multi-mode optical fiber interface. We show that the setup operates well in the visible and near infrared spectrum, and is able to capture images at the single-photon level.

We thank Philipp Zolotov and Pavel Morozov for NbN film fabrication, ARC coating, and fiber coupling of the detector. We also thank Swabian Instruments GmbH and Dr. Helmut Fedder personally for the kindly provided experimental equipment (Time Tagger Ultra 8). The work in the part of SNSPD research and development was supported by the Russian Foundation for Basic Research Project No. 18-29-20100. The work in the part of the optical setup and imaging was supported by Russian Foundation for Basic Research Project No. 20-32-51004.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (down) 1770
Permanent link to this record
 

 
Author Verevkin, A.; Zhang, J.; Pearlman, A.; Slysz, W.; Sobolewski, Roman; Korneev, A.; Kouminov, P.; Okunev, O.; Chulkova, G.; Gol'tsman, G.
Title Ultimate sensitivity of superconducting single-photon detectors in the visible to infrared range Type Miscellaneous
Year 2004 Publication ResearchGate Abbreviated Journal ResearchGate
Volume Issue Pages
Keywords NbN SSPD, SNSPD
Abstract We present our quantum efficiency (QE) and noise equivalent power (NEP) measurements of the meandertype ultrathin NbN superconducting single-photon detector in the visible to infrared radiation range. The nanostructured devices with 3.5-nm film thickness demonstrate QE up to~ 10% at 1.3–1.55 µm wavelength, and up to 20% in the entire visible range. The detectors are sensitive to infrared radiation with the wavelengths down to~ 10 µm. NEP of about 2× 10-18 W/Hz1/2 was obtained at 1.3 µm wavelength. Such high sensitivity together with GHz-range counting speed, make NbN photon counters very promising for efficient, ultrafast quantum communications and another applications. We discuss the origin of dark counts in our devices and their ultimate sensitivity in terms of the resistive fluctuations in our superconducting nanostructured devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Not attributed to any publisher! File name: PR9VervekinSfin_f.doc; Author: JAOLEARY; Last modification date: 2004-02-26 Approved no
Call Number Serial (down) 1751
Permanent link to this record
 

 
Author Zhang, J.; Verevkin, A.; Slysz, W.; Chulkova, G.; Korneev, A.; Lipatov, A.; Okunev, O.; Gol’tsman, G. N.; Sobolewski, Roman
Title Time-resolved characterization of NbN superconducting single-photon optical detectors Type Conference Article
Year 2017 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 10313 Issue Pages 103130F (1 to 3)
Keywords NbN SSPD, SNSPD
Abstract NbN superconducting single-photon detectors (SSPDs) are very promising devices for their picosecond response time, high intrinsic quantum efficiency, and high signal-to-noise ratio within the radiation wavelength from ultraviolet to near infrared (0.4 gm to 3 gm) [1-3]. The single photon counting property of NbN SSPDs have been investigated thoroughly and a model of hotspot formation has been introduced to explain the physics of the photon- counting mechanism [4-6]. At high incident flux density (many-photon pulses), there are, of course, a large number of hotspots simultaneously formed in the superconducting stripe. If these hotspots overlap with each other across the width w of the stripe, a resistive barrier is formed instantly and a voltage signal can be generated. We assume here that the stripe thickness d is less than the electron diffusion length, so the hotspot region can be considered uniform. On the other hand, when the photon flux is so low that on average only one hotspot is formed across w at a given time, the formation of the resistive barrier will be realized only when the supercurrent at sidewalks surpasses the critical current (jr) of the superconducting stripe [1]. In the latter situation, the formation of the resistive barrier is associated with the phase-slip center (PSC) development. The effect of PSCs on the suppression of superconductivity in nanowires has been discussed very recently [8, 9] and is the subject of great interest.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Armitage, J. C.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Opto-Canada: SPIE Regional Meeting on Optoelectronics, Photonics, and Imaging, 2002, Ottawa, Ontario, Canada
Notes Downloaded from http://www2.ece.rochester.edu/projects/ufqp/PDF/2002/213NbNTimeOPTO_b.pdf This artcle was published in 2017 with only first author indicated (Zhang, J.). There were 8 more authors! Approved no
Call Number Serial (down) 1750
Permanent link to this record
 

 
Author Verevkin, A.; Xu, Y.; Zheng, X.; Williams, C.; Sobolewski, Roman; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol’tsman, G. N.
Title Superconducting NbN-based ultrafast hot-electron single-photon detector for infrared range Type Conference Article
Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 12th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 462-468
Keywords NbN SSPD, SNSPD
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (down) 1539
Permanent link to this record
 

 
Author Lipatov, A.; Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Kouminov, P.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, R.
Title An ultrafast NbN hot-electron single-photon detector for electronic applications Type Journal Article
Year 2002 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 15 Issue 12 Pages 1689-1692
Keywords NbN SSPD, SNSPD, QE, jitter, dark counts
Abstract We present the latest generation of our superconducting single-photon detector (SPD), which can work from ultraviolet to mid-infrared optical radiation wavelengths. The detector combines a high speed of operation and low jitter with high quantum efficiency (QE) and very low dark count level. The technology enhancement allows us to produce ultrathin (3.5 nm thick) structures that demonstrate QE hundreds of times better, at 1.55 μm, than previous 10 nm thick SPDs. The best, 10 × 10 μm2, SPDs demonstrate QE up to 5% at 1.55 μm and up to 11% at 0.86 μm. The intrinsic detector QE, normalized to the film absorption coefficient, reaches 100% at bias currents above 0.9 Ic for photons with wavelengths shorter than 1.3 μm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (down) 1533
Permanent link to this record
 

 
Author Okunev, O.; Smirnov, K.; Chulkova, G.; Korneev, A.; Lipatov, A.; Gol'tsman, G.; Zhang, J.; Slysz, W.; Verevkin, A.; Sobolewski, Roman
Title Ultrafast NBN hot-electron single-photon detectors for electronic applications Type Abstract
Year 2002 Publication Abstracts 8-th IUMRS-ICEM Abbreviated Journal Abstracts 8-th IUMRS-ICEM
Volume Issue Pages
Keywords NbN SSPD, SNSPD
Abstract We present a new, simple to manufacture, single-photon detector (SPD), which can work from ultraviolet to near-infrared wavelengths of optical radiation and combines high speed of operation, high quantum efficiency (QE), and very low dark counts. The devices are superconducting and operate at temperature below 5 K. The physics of operation of our SPD is based on formation of a photon-induced resistive hotspot and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconductor.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference 8th IUMRS International Conference on Electronic Materials
Notes Approved no
Call Number Serial (down) 1532
Permanent link to this record