|   | 
Details
   web
Records
Author Sahu, Mitrabhanu; Bae, Myung-Ho; Rogachev, Andrey; Pekker, David; Wei, Tzu-Chieh; Shah, Nayana; Goldbart, Paul M.; Bezryadin, Alexey
Title Individual topological tunnelling events of a quantum field probed through their macroscopic consequences Type Journal Article
Year 2009 Publication Nature Phys. Abbreviated Journal Nature Phys.
Volume 5 Issue Pages 503-508
Keywords phase slips, superconducting nanowires
Abstract Phase slips are topological fluctuations that carry the superconducting order-parameter field between distinct current-carrying states. Owing to these phase slips, superconducting nanowires acquire electrical resistance. In such wires, it is well known that at higher temperatures phase slips occur through the process of thermal barrier-crossing by the order-parameter field. At low temperatures, the general expectation is that phase slips should proceed through quantum tunnelling events, which are known as quantum phase slips. However, resistive measurements have produced evidence both for and against the occurrence of quantum phase slips. Here, we report evidence for the observation of individual quantum phase-slip events in homogeneous ultranarrow wires at high bias currents. We accomplish this through measurements of the distribution of switching currents for which the width exhibits a rather counter-intuitive, monotonic increase with decreasing temperature. Importantly, measurements show that in nanowires with larger critical currents, quantum fluctuations dominate thermal fluctuations up to higher temperatures.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk Approved no
Call Number Serial (up) 928
Permanent link to this record
 

 
Author Ovchinnikov, Yu. N.; Varlamov, A. A.
Title Fluctuation-dissipative phenomena in a narrow superconducting channel carrying current below critical Type Journal Article
Year 2009 Publication arXiv Abbreviated Journal
Volume 0910.2659v1 Issue Pages 1-4
Keywords superconducting nanowire, resistance calculation
Abstract The theory of current transport in a narrow superconducting channel accounting for thermal fluctuations is developed. These fluctuations result in the appearance of small but finite dissipation in the sample. The value of corresponding voltage is found as the function of temperature (close to transition temperature) and arbitrary bias current. It is demonstrated that the value of the activation energy (exponential factor in the Arrenius law) when current approaches to the critical one is proportional to (1-J/Jc)^(5/4). This result is in concordance with the one for the affine phenomenon of the Josephson current decay due to the thermal phase fluctuations, where the activation energy proportional (1-J/J_c)^(3/2)(the difference in the exponents is related to the additional current dependence of the order parameter). Found dependence of the activation energy on current explains the enormous discrepancy between the theoretically predicted before and the experimentally observed broadening of the resistive transition.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes arXiv:0910.2659v1; 4 pages, 3 figures Approved no
Call Number Serial (up) 931
Permanent link to this record
 

 
Author Korneeva, Yuliya; Florya, Irina; Vdovichev, Sergey; Moshkova, Mariya; Simonov, Nikita; Kaurova, Natalia; Korneev, Alexander; Goltsman, Gregory
Title Comparison of hot-spot formation in NbN and MoN thin superconducting films after photon absorption Type Conference Article
Year 2017 Publication IEEE Transactions on Applied Superconductivity Abbreviated Journal IEEE Transactions on Applied Superconductiv
Volume 27 Issue 4 Pages 5
Keywords Thin film devices, Superconducitng photoncounting devices, Nanowire single-photon detectors
Abstract In superconducting single-photon detectors SSPD

the efficiency of local suppression of superconductivity and hotspot

formation is controlled by diffusivity and electron-phonon

interaction time. Here we selected a material, 3.6-nm-thick MoNx

film, which features diffusivity close to those of NbN traditionally

used for SSPD fabrication, but with electron-phonon interaction

time an order of magnitude larger. In MoNx detectors we study

the dependence of detection efficiency on bias current, photon

energy, and strip width and compare it with NbN SSPD. We

observe non-linear current-energy dependence in MoNx SSPD

and more pronounced plateaus in dependences of detection

efficiency on bias current which we attribute to longer electronphonon

interaction time.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial (up) 1114
Permanent link to this record
 

 
Author Rath, P.; Vetter, A.; Kovalyuk, V.; Ferrari, S.; Kahl, O.; Nebel, C.; Goltsman, G. N.; Korneev, A.; Pernice, W. H. P.
Title Travelling-wave single-photon detectors integrated with diamond photonic circuits: operation at visible and telecom wavelengths with a timing jitter down to 23 ps Type Conference Article
Year 2016 Publication Integrated Optics: Devices, Mat. Technol. XX Abbreviated Journal Integrated Optics: Devices, Mat. Technol. XX
Volume 9750 Issue Pages 135-142
Keywords SSPD, Superconducting Nanowire Single-Photon Detector, SNSPD, Single Photon Detector, Diamond Photonics, Diamond Integrated Optics, Diamond Waveguides, Integrated Optics, Low Timing Jitter
Abstract We report on the design, fabrication and measurement of travelling-wave superconducting nanowire single-photon detectors (SNSPDs) integrated with polycrystalline diamond photonic circuits. We analyze their performance both in the near-infrared wavelength regime around 1600 nm and at 765 nm. Near-IR detection is important for compatibility with the telecommunication infrastructure, while operation in the visible wavelength range is relevant for compatibility with the emission line of silicon vacancy centers in diamond which can be used as efficient single-photon sources. Our detectors feature high critical currents (up to 31 μA) and high performance in terms of efficiency (up to 74% at 765 nm), noise-equivalent power (down to 4.4×10-19 W/Hz1/2 at 765 nm) and timing jitter (down to 23 ps).
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Broquin, J.-E.; Conti, G.N.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 1210
Permanent link to this record
 

 
Author Korneev, A.; Divochiy, A.; Marsili, F.; Bitauld, D.; Fiore, A.; Seleznev, V.; Kaurova, N.; Tarkhov, M.; Minaeva, O.; Chulkova, G.; Smirnov, K.; Gaggero, A.; Leoni, R.; Mattioli, F.; Lagoudakis, K.; Benkhaoul, M.; Levy, F.; Goltsman, G.
Title Superconducting photon number resolving counter for near infrared applications Type Conference Article
Year 2008 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 7138 Issue Pages 713828 (1 to 5)
Keywords PNR SSPD; SNSPD; Nanowire superconducting single-photon detector, ultrathin NbN film, infrared
Abstract We present a novel concept of photon number resolving detector based on 120-nm-wide superconducting stripes made of 4-nm-thick NbN film and connected in parallel (PNR-SSPD). The detector consisting of 5 strips demonstrate a capability to resolve up to 4 photons absorbed simultaneously with the single-photon quantum efficiency of 2.5% and negligibly low dark count rate.
Address
Corporate Author Thesis
Publisher Spie Place of Publication Editor Tománek, P.; Senderáková, D.; Hrabovský, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 10.1117/12.818079 Serial (up) 1241
Permanent link to this record