|   | 
Details
   web
Records
Author Nagatsuma, T.; Hirata, A.; Sato, Y.; Yamaguchi, R.; Takahashi, H.; Kosugi, T.; Tokumitsu, M.; Sugahara, H.; Furuta, T.; Ito, H.
Title Sub-Terahertz Wireless Communications Technologies Type Conference Article
Year 2005 Publication Proc. 18th International Conference on Applied Electromagnetics and Communications (ICECom 2005) Abbreviated Journal
Volume Issue Pages 1-4
Keywords subterahartz terahertz THz communications
Abstract This paper presents a 10-Gb/s wireless link system that uses a 120-GHz-band sub-terahertz electro-magnetic waves. In the transmitter, photonic techniques are used for generation, modulation, and emission of the sub-THz signals, while the receiver is composed of all-electronic devices using InP-HEMTs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 593
Permanent link to this record
 

 
Author Nagatsuma, T.; Hirata, A.; Royter, Y.; Shinagawa, M.; Furuta, T.; Ishibashi, T.; Ito, H.
Title A 120-GHz integrated photonic transmitter Type Conference Article
Year 2000 Publication Proc. International topical meeting on microwave photonics (MWP 2000) Abbreviated Journal
Volume Issue Pages 225 - 228
Keywords THz, teraherts communications, terahertz communication channel, photodiode, transmitter
Abstract A photonics-based 120-GHz transmitter has been developed. A photodiode, a planar antenna and a silicon lens were integrated to form a compact millimeter-wave (MMW) emitter. The MMW signal emitted from the transmitter has been detected with a waveguide-mounted Schottky diode. The received power exceeded 100 μW, which is the highest value ever reported for photonic MMW transmitter at frequencies of >100 GHz
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 595
Permanent link to this record
 

 
Author Nebosis, R. S.; Semenov, A. D.; Gousev, Yu. P.; Renk, K. F.
Title Rigorous analysis of a superconducting hot-electron bolometer mixer: theory and comparision with experiment Type Conference Article
Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 601-613
Keywords HEB mixer, model, conversion gain, noise temperature, impedance, 2.5 THz
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Charlottesville, Virginia, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 605
Permanent link to this record
 

 
Author Seki, T.; Shibata, H.; Takesue, H.; Tokura, Y.; Imoto, N.
Title Comparison of timing jitter between NbN superconducting single-photon detector and avalanche photodiode Type Journal Article
Year 2010 Publication Phys. C Abbreviated Journal Phys. C
Volume 470 Issue 20 Pages 1534-1537
Keywords SSPD; APD; jitter
Abstract We report the pulse-to-pulse timing jitter measurement of a niobium nitride (NbN) superconducting single-photon detector (SSPD) and an InGaAs avalanche photodiode (APD) at 1550-nm wavelength. A direct comparison of their timing jitter was performed by using the same experimental configuration to measure both detectors. The measured jitter of the SSPD and the APD are 75 and 84 ps at full-width at half-maximum (FWHM), and 138 and 384 ps at full-width at tenth-maximum (FWTM), respectively. The jitter of the SSPD remains small at FWTM while that of APD is wide. We also estimated the transmission distances and secure key generation rates for fiber-based quantum key distribution (QKD) which uses these detectors. The estimated transmission distances of the APD are 86 km and 107 km with respect to 1 ns and 100 ps time windows, respectively, and those of the SSPD are 125 km and 172 km with respect to 1 ns and 100 ps time windows, respectively. This estimation indicates the SSPDЃfs advantages for QKD compared to the APD.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ akorneev @ Serial (up) 613
Permanent link to this record
 

 
Author Karpov, A.; Miller, D.; Stern, J. A.; Bumble, B.; LeDuc, H. G.; Zmuidzinas, J.
Title Broadband SIS mixer for 1 THz Band Type Conference Article
Year 2009 Publication Proc. 20th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 35-35
Keywords SIS mixer, noise temperature
Abstract We report the development of a low noise and broadband SIS mixer aimed for 1 THz channel of the Caltech Airborne Submillimeter Interstellar Medium Investigations Receiver (CASIMIR), designed for the Stratospheric Observatory for Far Infrared Astronomy, (SOFIA). The mixer uses an array of 0.24 µm² Nb/Al-AlN/NbTiN SIS junctions with critical current density of 30-50 KA/cm². The junctions are shaped in order to optimize the suppression of the Josephson DC currents. We are using a double slot planar antenna to couple the mixer chip with the telescope beam. The RF matching microcircuit is made using Nb and gold films. The mixer IF circuit is designed to cover 4 – 8 GHz band. A test receiver with the new mixer has a low noise operation in a 0.87 – 1.12 THz band. The minimum DSB receiver noise measured at 1 THz is 260 K (Y=1.64), apparently the lowest reported up to date. The receiver noise corrected for the loss in the LO injection beam splitter and in the cryostat window is 200 K. The combination of a broad operation band of about 250 GHz with a low receiver noise is making the new mixer a useful element for application at SOFIA. We will discuss the prospective of a further improvement of the sensitivity and extension of the upper frequency of operation of SIS mixer.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 614
Permanent link to this record