|   | 
Details
   web
Records
Author Kopp, Victor I.; Churikov, Victor M.; Genack, Azriel Z.
Title Chiral-fiber gratings sense the environment Type Conference Article
Year 2008 Publication Laser Focus World Abbreviated Journal
Volume 44 Issue 6 Pages 76-79
Keywords chiral fiber gratings, chiral gratings, from chiralphotonics
Abstract The article focuses on the use of chiral fiber gratings in sensing. It discusses the production of chiral optical fibers which are created through twisting fibers. It cites experiments concerning the function of chiral-fiber grating produced by twisting optical fibers. The process and results of the experiments are also discussed in the article.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 850
Permanent link to this record
 

 
Author Tang, Liang; Kocabas, Sukru Ekin; Latif, Salman; Okyay, Ali K.; Ly-Gagnon, Dany-Sebastien; Saraswat, Krishna C.; Miller, David A. B.
Title Nanometre-scale germanium photodetector enhanced by a near-infrared dipole antenna Type Journal Article
Year 2008 Publication Nature Photonics Abbreviated Journal
Volume 2 Issue Pages 226-229
Keywords optical antennas
Abstract A critical challenge for the convergence of optics and electronics is that the micrometre scale of optics is significantly larger than the nanometre scale of modern electronic devices. In the conversion from photons to electrons by photodetectors, this size incompatibility often leads to substantial penalties in power dissipation, area, latency and noise. A photodetector can be made smaller by using a subwavelength active region; however, this can result in very low responsivity because of the diffraction limit of the light. Here we exploit the idea of a half-wave Hertz dipole antenna (length approx 380 nm) from radio waves, but at near-infrared wavelengths (length approx 1.3 microm), to concentrate radiation into a nanometre-scale germanium photodetector. This gives a polarization contrast of a factor of 20 in the resulting photocurrent in the subwavelength germanium element, which has an active volume of 0.00072 microm3, a size that is two orders of magnitude smaller than previously demonstrated detectors at such wavelengths.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 858
Permanent link to this record
 

 
Author Kooi, Jacob Willem
Title Advanced receivers for submillimeter and far infrared astronomy Type Book Whole
Year 2008 Publication University of Groningen Abbreviated Journal RUG
Volume Issue Pages
Keywords HEB, SIS, TES, NEP, noise temperature, IF bandwidth, waveguide, impedance, conversion gain, FTS, integrated array, stability, Allan variance, multi-layer antireflection coating
Abstract
Address
Corporate Author Thesis Doctoral thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN 978-90-367-3653-4 Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 881
Permanent link to this record
 

 
Author Cherednichenko, Sergey; Drakinskiy, Vladimir; Berg, Therese; Khosropanah, Pourya; Kollberg, Erik
Title Hot-electron bolometer terahertz mixers for the Herschel Space Observatory Type Journal Article
Year 2008 Publication Review of Scientific Instruments Abbreviated Journal Rev. Sci. Instrum.
Volume 79 Issue Pages 034501
Keywords HEB mixer, HEB detector, HEB direct detector, applications
Abstract We report on low noise terahertz mixers(1.4–1.9THz) developed for the heterodyne spectrometer onboard the Herschel Space Observatory. The mixers employ double slot antenna integrated superconducting hot-electron bolometers (HEBs) made of thin NbN films. The mixer performance was characterized in terms of detection sensitivity across the entire rf band by using a Fourier transform spectrometer (from 0.5to2.5THz, with 30GHz resolution) and also by measuring the mixernoise temperature at a limited number of discrete frequencies. The lowest mixernoise temperature recorded was 750K [double sideband (DSB)] at 1.6THz and 950KDSB at 1.9THz local oscillator (LO) frequencies. Averaged across the intermediate frequency band of 2.4–4.8GHz, the mixernoise temperature was 1100KDSB at 1.6THz and 1450KDSB at 1.9THz LO frequencies. The HEB heterodyne receiver stability has been analyzed and compared to the HEB stability in the direct detection mode. The optimal local oscillator power was determined and found to be in a 200–500nW range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 908
Permanent link to this record
 

 
Author Divochiy, Aleksander; Marsili, Francesco; Bitauld, David; Gaggero, Alessandro; Leoni, Roberto; Mattioli, Francesco; Korneev, Alexander; Seleznev, Vitaliy; Kaurova, Nataliya; Minaeva, Olga; Gol'tsman, Gregory; Lagoudakis, Konstantinos G.; Benkhaoul, Moushab; Lévy, Francis; Fiore, Andrea
Title Superconducting nanowire photon-number-resolving detector at telecommunication wavelengths Type Journal Article
Year 2008 Publication Nat. Photon. Abbreviated Journal Nat. Photon.
Volume 2 Issue 5 Pages 302-306
Keywords SSPD, photon-number-resolving
Abstract Optical-to-electrical conversion, which is the basis of the operation of optical detectors, can be linear or nonlinear. When high sensitivities are needed, single-photon detectors are used, which operate in a strongly nonlinear mode, their response being independent of the number of detected photons. However, photon-number-resolving detectors are needed, particularly in quantum optics, where n-photon states are routinely produced. In quantum communication and quantum information processing, the photon-number-resolving functionality is key to many protocols, such as the implementation of quantum repeaters1 and linear-optics quantum computing2. A linear detector with single-photon sensitivity can also be used for measuring a temporal waveform at extremely low light levels, such as in long-distance optical communications, fluorescence spectroscopy and optical time-domain reflectometry. We demonstrate here a photon-number-resolving detector based on parallel superconducting nanowires and capable of counting up to four photons at telecommunication wavelengths, with an ultralow dark count rate and high counting frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 916
Permanent link to this record
 

 
Author Shah, Nayana; Pekker, David; Goldbart, Paul M.
Title Inherent stochasticity of superconductor-resistor switching behavior in nanowires Type Journal Article
Year 2008 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.
Volume 101 Issue Pages 207001(1 to 4)
Keywords superconducting nanowires, phase-slip, self-heating effect, temperature profile
Abstract We study the stochastic dynamics of superconductive-resistive switching in hysteretic current-biased superconducting nanowires undergoing phase-slip fluctuations. We evaluate the mean switching time using the master-equation formalism, and hence obtain the distribution of switching currents. We find that as the temperature is reduced this distribution initially broadens; only at lower temperatures does it show the narrowing with cooling naively expected for phase slips that are thermally activated. We also find that although several phase-slip events are generally necessary to induce switching, there is an experimentally accessible regime of temperatures and currents for which just one single phase-slip event is sufficient to induce switching, via the local heating it causes.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 919
Permanent link to this record
 

 
Author -
Title ГОСТ 2.125-2008 ЕСКД Правила выполнения эскизных конструкторских документов Type Miscellaneous
Year 2008 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kostochkin @ Serial (up) 934
Permanent link to this record
 

 
Author Meledin D.; Desmaris V.; Ferm S.-E.; Fredrixon M.; Henke D.; Lapkin I.; Nyström O.; Pantaleev M.; Pavolotsky A.; Strandberg M.; Sundin E.; Belitsky V.
Title APEX Band T2: A 1.25 – 1.39 THz Waveguide Balanced HEB Receiver Type Journal Article
Year 2008 Publication Abbreviated Journal
Volume Issue Pages 181-185
Keywords
Abstract A waveguide 1.25–1.39 THz Hot Electron Bolometer (HEB) balanced receiver was successfully developed, characterized and installed at the Atacama Pathfinder EXperiment (APEX) telescope. The receiver employs a quadrature balanced scheme using a waveguide 90-degree 3 dB RF hybrid, HEB mixers and a 180-degree IF hybrid. The HEB mixers are based on ultrathin NbN film deposited on crystalline quartz with a MgO buffer layer. Integrated into the multi-channel APEX facility receiver (SHeFI), the results presented here demonstrate exceptional performance; a receiver noise temperature of 1000 K measured at the telescope at the center of the receiver IF band 2-4 GHz, and at an LO frequency of 1294 GHz. Stability of the receiver is fully in line with the SIS mixer bands of the SHeFI, and gives a spectroscopic Allan time of more than 200 s with a noise bandwidth of 1 MHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ atomics90 @ Serial (up) 974
Permanent link to this record
 

 
Author Jiang, Leaf A.; Luu, Jane X.
Title Heterodyne detection with a weak local oscillator Type Journal Article
Year 2008 Publication Appl. Opt. Abbreviated Journal Appl. Opt.
Volume 47 Issue 10 Pages 1486-1503
Keywords weak local oscillator, weak LO, photon-counting detector, photon-counting mixer, counter detector, counter mixer, PD mixer, PCD mixer
Abstract eterodyne detection in the limit of weak (a few photons) local oscillator and signal power levels has been largely neglected in the past, as authors almost always assumed that the noise was dominated by the shot noise from a strong local oscillator. We present the theory for heterodyne detection of diffuse and specular targets at arbitrary power levels, including the case where the local oscillator power is only a few photons per coherent integration period. The theory was tested with experimental results, and was found to show good agreement. We show how to interpret the power spectral density of the heterodyne signal and how to determine the optimal number of signal and local oscillator photons per coherent integration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial (up) 979
Permanent link to this record
 

 
Author Korneev, A.; Divochiy, A.; Tarkhov, M.; Minaeva, O.; Seleznev, V.; Kaurova, N.; Voronov, B.; Okunev, O.; Chulkova, G.; Milostnaya, I.; Smirnov, K.; Gol’tsman, G.
Title Superconducting NbN-nanowire single-photon detectors capable of photon number resolving Type Conference Article
Year 2008 Publication Supercond. News Forum Abbreviated Journal Supercond. News Forum
Volume Issue Pages
Keywords PNR SSPD, SNSPD
Abstract We present our latest generation of ultra-fast superconducting NbN single-photon detectors (SSPD) capable of photon-number resolving (PNR). The novel SSPDs combine 10 μm x 10 μm active area with low kinetic inductance and PNR capability. That resulted in significantly reduced photoresponse pulse duration, allowing for GHz counting rates. The detector’s response magnitude is directly proportional to the number of incident photons, which makes this feature easy to use. We present experimental data on the performance of the PNR SSPDs. These detectors are perfectly suited for fibreless free-space telecommunications, as well as for ultra-fast quantum cryptography and quantum computing.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Reference No. ST34, paper # 012307, eventually not pulished (skipped) at https://iopscience.iop.org/issue/0953-2048/21/1 Approved no
Call Number RPLAB @ sasha @ korneevsuperconducting Serial (up) 1046
Permanent link to this record