toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Karasik, B. S.; Gol'tsman, G. N.; Voronov, B. M.; Svechnikov, S. I.; Gershenzon, E. M.; Ekstrom, H.; Jacobsson, S.; Kollberg, E.; Yngvesson, K. S. url  doi
openurl 
  Title Hot electron quasioptical NbN superconducting mixer Type Journal Article
  Year 1995 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 5 Issue 2 Pages 2232-2235  
  Keywords NbN HEB mixers  
  Abstract Hot electron superconductor mixer devices made of thin NbN films on SiO/sub 2/-Si/sub 3/N/sub 4/-Si membrane have been fabricated for 300-350 GHz operation. The device consists of 5-10 parallel strips each 5 /spl mu/m long by 1 /spl mu/m wide which are coupled to a tapered slot-line antenna. The I-V characteristics and position of optimum bias point were studied in the temperature range 4.5-8 K. The performance of the mixer at higher temperatures is closer to that predicted by theory for uniform electron heating. The intermediate frequency bandwidth versus bias has also been investigated. At the operating temperature 4.2 K a bandwidth as wide as 0.8 GHz has been measured for a mixer made of 6 nm thick film. The bandwidth tends to increase with operating temperature. The performance of the NbN mixer is expected to be better for higher frequencies where the absorption of radiation should be more uniform.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial (down) 1622  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S.; Mueller, E. R.; Waldman, J.; Gol'tsman, G. N.; Voronov, B. M.; Cherednichenco, S. I.; Svechnikov, S. I.; Yagoubov, P. A.; Gershenzon, E. M. url  openurl
  Title Optimization of hot eleciron bolometer mixing efficiency in NbN at 119 micrometer wavelength Type Conference Article
  Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 7th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 584-600  
  Keywords NbN HEB mixers  
  Abstract We describe an investigation of a NbN HEB mixer for 2.5 THz. An intrinsic conversion loss of 23 dB has been measured with a two-laser measurement technique. The conversion loss was limited by the LO power available and is expected to decrease to 10 dB or less when sufficient LO power is available. For this initial experiment we used a prototype device which is directly coupled to the laser beams. We present results for a back-short technique that improves the optical coupling to the device and describe our progress for an antenna-coupled device with a smaller dimension. Based on our measured data for conversion loss and device output noise level, we predict that NbN HEB mixers will be capable of achieving DSB receiver noise temperatures of ten times the quantum noise limit in the THz range.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial (down) 1616  
Permanent link to this record
 

 
Author Verevkin, A. A.; Ptitsina, N. G.; Chulcova, G. M.; Gol'Tsman, G. N.; Gershenzon, E. M.; Yngvesson, K. S. url  doi
openurl 
  Title Determination of the limiting mobility of a two-dimensional electron gas in AlxGa1-xAs/GaAs heterostructures and direct measurement of the energy relaxation time Type Journal Article
  Year 1996 Publication Phys. Rev. B Condens. Matter. Abbreviated Journal Phys. Rev. B Condens. Matter.  
  Volume 53 Issue 12 Pages R7592-R7595  
  Keywords 2DEG, AlGaAs/GaAs heterostructures  
  Abstract We present results for a method to measure directly the energy relaxation time (τe) for electrons in a single AlxGa1−xAs/GaAs heterojunction; measurements were performed from 1.6 to 15 K under quasiequilibrium conditions. We find τeαT−1 below 4 K, and τe independent of T above 4 K. We have also measured the energy-loss rate, ⟨Q⟩, by the Shubnikov-de Haas technique, and find ⟨Q⟩α(T3e−T3) for T<~4.2 K; Te is the electron temperature. The values and temperature dependence of τe and ⟨Q⟩ for T<4 K agree with calculations based on piezoelectric and deformation potential acoustic phonon scattering. At 4.2 K, we can also estimate the momentum relaxation time, τm, from our measured τe. This leads to a preliminary estimate of the phonon-limited mobility at 4.2 K of μ=3×107 cm2/Vs (ns=4.2×1011 cm−2), which agrees well with published numerical calculations, as well as with an earlier indirect estimate based on measurements on a sample with much higher mobility.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0163-1829 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:9982274 Approved no  
  Call Number Serial (down) 1612  
Permanent link to this record
 

 
Author Verevkin, A. A.; Ptitsina, N. G.; Chulcova, G. M.; Gol'tsman, G. N.; Gershenzon, E. M.; Yngvesson, K. S. url  doi
openurl 
  Title Direct measurements of energy relaxation time of electrons in AlGaAs/GaAs heterostructures under quasi-equilibrium conditions Type Journal Article
  Year 1996 Publication Surface Science Abbreviated Journal Surface Science  
  Volume 361-362 Issue Pages 569-573  
  Keywords 2DEG, AlGaAs/GaAs heterostructures  
  Abstract For the first time, results are presented of a direct measurement of the energy relaxation time τε of 2D electrons in an AlGaAs/GaAs heterojunction at T = 1 and 5–20 K. A weak temperature dependence of τε for the T > 4K range and a linear temperature dependence of the reciprocal of τε for T < 4K have been observed. The linear dependence τε−1 ≈ T in the Bloch-Gruneisen regime is direct evidence of the predominance of the piezo-electric mechanism of electron-phonon interaction in non-elastic electron scattering processes. The values of τε in this regime are in very good agreement with the results of the Karpus theory. At higher temperatures, where the deformation-potential scattering becomes noticeable, a substantial disagreement between the experimental data and the theoretical results is observed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0039-6028 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial (down) 1609  
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Svechnikov, S. I.; Voronov, B. M.; Cherednichenko, S. I.; Gershenzon, E. M. url  openurl
  Title NbN hot electron bolometric mixer for 2.5 THz: the phonon cooled version Type Conference Article
  Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 258-271  
  Keywords NbN HEB mixers  
  Abstract We describe an investigation of a NbN HEB mixer for 2.5 THz. NbN HEBs are phonon-cooled de-. vices which are expected, according to theory, to achieve up to 10 GHz IF conversion gain bandwidth. We have developed an antenna coupled device using a log-periodic antenna and a silicon lens. We have demon- strated that sufficient LO power can be coupled to the device in order to bring it to the optimum mixer oper- ating point. The LO power required is less than 1 microwatts as measured directly at the device. We also describe the impedance characteristics of NbN devices and compare them with theory. The experimental results agree with theory except for the imaginary part of the impedance at very low frequencies as was demonstrated by other groups.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial (down) 1605  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: