toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lydersen, Lars; Wiechers, Carlos; Wittmann, Christoffer; Elser, Dominique; Skaar, Johannes; Makarov, Vadim openurl 
  Title Thermal blinding of gated detectors in quantum cryptography Type Journal Article
  Year 2010 Publication Optics Express Abbreviated Journal Opt. Express  
  Volume 18 Issue 26 Pages 27938-27954  
  Keywords quantum cryptography; QKD; hacking; SPD; APD  
  Abstract It has previously been shown that the gated detectors of two commercially available quantum key distribution (QKD) systems are blindable and controllable by an eavesdropper using continuous-wave illumination and short bright trigger pulses, manipulating voltages in the circuit [L. Lydersen et al., Nat. Photonics DOI:10.1038/nphoton.2010.214]. This allows for an attack eavesdropping the full raw and secret key without increasing the quantum bit error rate (QBER). Here we show how thermal effects in detectors under bright illumination can lead to the same outcome. We demonstrate that the detectors in a commercial QKD system Clavis2 can be blinded by heating the avalanche photo diodes (APDs) using bright illumination, so-called thermal blinding. Further, the detectors can be triggered using short bright pulses once they are blind. For systems with pauses between packet transmission such as the plug-and-play systems, thermal inertia enables Eve to apply the bright blinding illumination before eavesdropping, making her more difficult to catch.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial (up) 729  
Permanent link to this record
 

 
Author Wiechers, C.; Lydersen, L.; Wittmann, C.; Elser, D.; Skaar, J.; Marquardt, Ch; Makarov, V.; Leuchs, G. openurl 
  Title After-gate attack on a quantum cryptosystem Type Journal Article
  Year 2011 Publication New J. Phys. Abbreviated Journal  
  Volume 13 Issue 1 Pages 14  
  Keywords quantum cryptography; hacking; interception; attack; SPD; APD; QKD  
  Abstract We present a method to control the detection events in quantum key distribution systems that use gated single-photon detectors. We employ bright pulses as faked states, timed to arrive at the avalanche photodiodes outside the activation time. The attack can remain unnoticed, since the faked states do not increase the error rate per se. This allows for an intercept-resend attack, where an eavesdropper transfers her detection events to the legitimate receiver without causing any errors. As a side effect, afterpulses, originating from accumulated charge carriers in the detectors, increase the error rate. We have experimentally tested detectors of the system id3110 (Clavis2) from ID Quantique. We identify the parameter regime in which the attack is feasible despite the side effect. Furthermore, we outline how simple modifications in the implementation can make the device immune to this attack.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial (up) 730  
Permanent link to this record
 

 
Author Килин, С. Я. openurl 
  Title Квантовая информация Type Journal Article
  Year 1999 Publication Успехи физических наук Abbreviated Journal УФН  
  Volume 169 Issue 5 Pages 507-527  
  Keywords quantum cryptography; QKD, BB84  
  Abstract Новое направление физики – квантовая информация – возникло на стыке квантовой механики, оптики, теории относительности и программирования, дискретной математики, лазерной физики и спектроскопии и включает в себя вопросы квантовых вычислений, квантовых компьютеров, квантовой телепортации и квантовой криптографии, проблемы декогеренции и спектроскопии одиночных молекул и примесных центров. Сообщается о некоторых новых результатах в этой быстро развивающейся области исследований.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial (up) 732  
Permanent link to this record
 

 
Author Esteban, Eduin; Serna, Hernandez openurl 
  Title Quantum key distribution protocol with private-public key Type Journal Article
  Year 2009 Publication arXiv Abbreviated Journal arXiv  
  Volume Issue Pages 3  
  Keywords quantum cryptography; QKD; protocol  
  Abstract A quantum cryptographic protocol based in public key cryptography combinations and private key cryptography is presented. Unlike the BB84 protocol 1 and its many variants 2,3 two quantum channels are used. The present research does not make reconciliation mechanisms of information to derive the key. A three related system of key distribution are described.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes arXiv: 0908.2146 Approved no  
  Call Number RPLAB @ gujma @ Serial (up) 756  
Permanent link to this record
 

 
Author Ozhegov, R.; Elezov, M.; Kurochkin, Y.; Kurochkin, V.; Divochiy, A.; Kovalyuk, V.; Vachtomin, Y.; Smirnov, K.; Goltsman, G. doi  openurl
  Title Quantum key distribution over 300 Type Conference Article
  Year 2014 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 9440 Issue Pages 1F (1 to 9)  
  Keywords SSPD, SNSPD applicatins, quantum key distribution, QKD  
  Abstract We discuss the possibility of polarization state reconstruction and measurement over 302 km by Superconducting Single- Photon Detectors (SSPDs). Because of the excellent characteristics and the possibility to be effectively coupled to singlemode optical fiber many applications of the SSPD have already been reported. The most impressive one is the quantum key distribution (QKD) over 250 km distance. This demonstration shows further possibilities for the improvement of the characteristics of quantum-cryptographic systems such as increasing the bit rate and the quantum channel length, and decreasing the quantum bit error rate (QBER). This improvement is possible because SSPDs have the best characteristics in comparison with other single-photon detectors. We have demonstrated the possibility of polarization state reconstruction and measurement over 302.5 km with superconducting single-photon detectors. The advantage of an autocompensating optical scheme, also known as “plugandplay” for quantum key distribution, is high stability in the presence of distortions along the line. To increase the distance of quantum key distribution with this optical scheme we implement the superconducting single photon detectors (SSPD). At the 5 MHz pulse repetition frequency and the average photon number equal to 0.4 we measured a 33 bit/s quantum key generation for a 101.7 km single mode ber quantum channel. The extremely low SSPD dark count rate allowed us to keep QBER at 1.6% level.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Orlikovsky, A. A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International Conference on Micro- and Nano-Electronics  
  Notes Approved no  
  Call Number RPLAB @ sasha @ ozhegov2014quantum Serial (up) 1048  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: