|   | 
Details
   web
Records
Author Baselmans, J. J. A.; Baryshev, A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; Voronov, B.; Gol'tsman, G.
Title Influence of the direct response on the heterodyne sensitivity of hot electron bolometer mixers Type Abstract
Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 81
Keywords NbN HEB mixers
Abstract We present a detailed experimental study of the direct detection effect in a small volume (0.15pm x lpm) NbN hot electron bolometer mixer. It is a quasioptical mixer with a twin slot antenna designed for 700 GHz and the measurement was done at a LO frequency of 670 GHz. The direct detection effect is characterized by a change in the mixer bias current when switching broadband radiation from a 300 K hot load to a 77 K cold load in a standard Y factor measurement. The result is, depending on the receiver under study, an increase or decrease in the receiver noise temperature. We find that the small signal noise temperature, which is the noise temperature that would be observed without the presence of the direct detection effect, and thus the one that is relevant for an astronomical observation, is 20% lower than the noise temperature obtained using 300 K and 77 K calibration loads. Thus, in our case the direct detection effect reduces the mixer sensitivity. These results are in good agreement with previous measurement at THz frequencies [1]. Other experiments report an increase in mixer sensitivity [2]. To analyze this discrepancy we have designed a separate set of experiments to find out the physical origin of the direct detection effect. Possible candidates are the bias current dependence of the mixer gain and the bias current dependence of the IF match. We measured directly the change in mixer IF match and receiver gain due to the direct detection effect. From these measurements we conclude that the direct detection effect is caused by a combination of bias current reduction when switching form the 77 K to the 300 K load in combination with the bias current dependence of the receiver gain. The bias current dependence of the receiver gain is shown to be mainly caused by the current dependence of the mixer gain. We also find that an increase in receiver sensitivity due to the direct detection effect is only possible if the noise temperature change due to the direct detection is dominated by the mixer-amplifier IF match. [1] J.J.A. Baselmans, A. Baryshev, S.F. Reker, M. Hajenius, J.R. Gao, T.M. Klapwijk, Yu.Vachtomin, S. Maslennikov, S. Antipov, B. Voronov, and G. Gol'tsman., Appl. Phys. Lett. 86, 163503 (2005). [2] S. Svechnokov, A. Verevkin, B. Voronov, E. Menschikov. E. Gershenzon, G. Gol'tsman, 9th Int. Symp. On Space THz. Techn., 45, (1999).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor (down) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1437
Permanent link to this record
 

 
Author Tarkhov, M.; Morozov, D.; Mauskopf, P.; Seleznev, V.; Korneev, A.; Kaurova, N.; Rubtsova, I.; Minaeva, O.; Voronov, B.; Goltsman, G.
Title Single photon counting detector for THz radioastronomy Type Conference Article
Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 119-122
Keywords NbN SSPD, SNSPD
Abstract In this paper we present the results of the research on the superconducting NbN-ultrathin-film single- photon detectors (SSPD) which are capable to detect single quanta in middle IR range. The detection mechanism is based on the hotspot formation in quasi-two-dimensional superconducting structures upon photon absorption. Spectral measurements showed that up to 5.7 gm wavelength (52 THz) the SSPD exhibits single-photon sensitivity. Reduction of operation temperature to 1.6 K allowed us to measure quantum efficiency of -4% at 60 THz. Although further decrease of the operation temperature far below 1 K does not lead to any significant increase of quantum efficiency. We expect that the improvement of the SSPD's performance at reduced operation temperature will make SSPD a practical detector with high characteristics for much lower THz frequencies as well.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor (down) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1438
Permanent link to this record
 

 
Author Gao, J. R.; Hajenius, M.; Tichelaar, F. D.; Voronov, B.; Grishina, E.; Klapwijk, T. M.; Gol'tsman, G.; Zorman, C. A.
Title Can NbN films on 3C-SiC/Si change the IF bandwidth of hot electron bolometer mixers? Type Conference Article
Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 187-189
Keywords NbN HEB mixers
Abstract We realized ultra thin NbN films sputtered grown on a 3C-SiC/Si substrate. The film with a thickness of 3.5-4.5 nm shows a 1', of 11.8 K, which is the highest I`, observed among ultra thin NbN films on different substrates. The high-resolution transmission electron microscopy (HRTEM) studies show that the film has a monocrystalline structure, confirming the epitaxial growth on the 3C-SiC. Based on a two-temperature model and input parameters from standard NbN films on Si, simulations predict that the new film can increase the IF bandwidth of a HEB mixer by about a factor of 2 in comparison to the standard films. In addition, we find standard NbN films on Si with a T c of 9.4 K have a thickness of around 5.5 nm, being thicker than expected (3.5 nm).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor (down) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1439
Permanent link to this record
 

 
Author Gol'tsman, G.; Maslennikov, S.; Finkel, M.; Antipov, S.; Kaurova, N.; Grishina, E.; Polyakov, S.; Vachtomin, Y.; Svechnikov, S.; Smirnov, K.; Voronov, B.
Title Nanostructured ultrathin NbN film as a terahertz hot-electron bolometer mixer Type Conference Article
Year 2006 Publication Proc. MRS Abbreviated Journal Proc. MRS
Volume 935 Issue Pages 210 (1 to 6)
Keywords NbN HEB mixers
Abstract Planar spiral antenna coupled and directly lens coupled NbN HEB mixer structures are studied. An additional MgO buffer layer between the superconducting film and Si substrate is introduced. The buffer layer enables us to increase the gain bandwidth of a HEB mixer due to better acoustic transparency. The gain bandwidth is widened as NbN film thickness decreases and amounts to 5.2 GHz. The noise temperature of antenna coupled mixer is 1300 and 3100 K at 2.5 and 3.8 THz respectively. The structure and composition of NbN films is investigated by X-ray diffraction spectroscopy methods. Noise performance degradation at LO frequencies more than 3 THz is due to the use of a planar antenna and signal loss in contacts between the antenna and the sensitive NbN bridge. The mixer is reconfigured for operation at higher frequencies in a manner that receiver’s noise temperature is only 2300 K (3 times of quantum limit) at LO frequency of 30 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor (down) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0272-9172 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1440
Permanent link to this record
 

 
Author Ryabchun, S.; Tong, C.-yu E.; Blundell, R.; Kimberk, R.; Gol’tsman, G.
Title Effect of microwave radiation on the stability of terahertz hot-electron bolometer mixers Type Conference Article
Year 2006 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 6373 Issue Pages 63730J (1 to 5)
Keywords NbN HEB mixers, hot-electron bolometer mixers, stability, Allan variance, LO power fluctuations
Abstract We report our studies of the effect of microwave radiation, with a frequency much lower than that corresponding to the energy gap of the superconductor, on the performance of the NbN hot-electron bolometer (HEB) mixer incorporated into a THz heterodyne receiver. It is shown that exposing the HEB mixer to microwave radiation does not result in a significant rise of the receiver noise temperature and degradation of the mixer conversion gain so long as the level of microwave power is small compared to the local oscillator drive. Hence the injection of a small, but controlled amount of microwave radiation enables active compensation of local oscillator power and coupling fluctuations which can significantly degrade the stability of HEB mixer receivers.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Anwar, M.; DeMaria, A.J.; Shur, M.S.
Language Summary Language Original Title
Series Editor (down) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz Physics, Devices, and Systems
Notes Approved no
Call Number Serial 1441
Permanent link to this record
 

 
Author Goltsman, G. N.
Title Submillimeter superconducting receivers for astronomy, atmospheric studies and other applications Type Abstract
Year 2006 Publication 31nd IRMW / 14th ICTE Abbreviated Journal 31nd IRMW / 14th ICTE
Volume Issue Pages 177
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor (down) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics
Notes Approved no
Call Number Serial 1443
Permanent link to this record
 

 
Author Vachtomin, Y. B.; Antipov, S. V.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Zhang, W.; Svechnikov, S. I.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Gol’tsman, G. N.
Title Quasioptical hot electron bolometer mixers based on thin NBN films for terahertz region Type Conference Article
Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal Proc. 16th Int. Crimean Microwave and Telecommunication Technology
Volume 2 Issue Pages 688-689
Keywords NbN HEB mixers
Abstract Presented in this paper are the performances of HEB mixers based on 2-3.5 nm thick NbN films integrated with log-periodic spiral antenna. Double side-band receiver noise temperature values are 1300 K and 3100 K at 2.5 THz and at 3.8 THz, respectively. Mixer gain bandwidth is 5.2 GHz. Local oscillator power is 1-3 muW for mixers with different active area
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor (down) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1445
Permanent link to this record
 

 
Author Вахтомин, Ю. Б.; Антипов, С. В.; Масленников, С. Н.; Смирнов, К. В.; Поляков, С. Л.; Чжан, В.; Свечников, С. И.; Каурова, Н. С.; Гришина, Е. В.; Воронов, Б. М.; Гольцман, Г. Н.
Title Квазиоптические смесители терагерцового диапазона на основе эффекта разогрева электронов в тонких пленках NbN Type Conference Article
Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal
Volume 2 Issue Pages 688-689
Keywords NbN HEB mixers
Abstract Представлены результаты измерения рактеристик смесителей на эффекте разогрева электронов в тонких сверхпроводниковых пленках NbN. Смесители были изготовлены на основе пленок NbN толщиной 2-3.5 нм осажденных на кремниевую подложку с буферным подсло- ем MgO. Смесительный элемент согласовывался с планар- ной логопериодической спиральной антенной. Лучшее зна- чение шумовой температуры приемника на основе NbN смесителя составило 1300 К и 3100 К на частотах гетеро- дина 2.5 TГц и 3.8 ТГц, соответственно. Максимальное зна- чение полосы преобразования, измеренной на частоте 900 |Ц, достигло значения 5.2 ГГц для смесителя изготовлен- ного из NbN пленки толщиной 2 нм. Оптимальная мощность Представлены результаты измерения ха- гетеродинного источника составила 1-3 мкВт для смесите- лей с различным объемом смесительного элемента.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor (down) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Duplicated as 1445 Approved no
Call Number Serial 1446
Permanent link to this record
 

 
Author Smirnov, K.; Korneev, A.; Minaeva, O.; Divochij, A.; Rubtsova, I.; Antipov, A.; Ryabchun, S.; Okunev, O.; Milostnaya, I.; Chulkova, G.; Voronov, B.; Kaurova, N.; Seleznev, V.; Korotetskaya, Y.; Gol’tsman, G.
Title Superconducting single-photon detector for near- and middle IR wavelength range Type Conference Article
Year 2006 Publication Proc. 16th Int. Crimean Microwave and Telecommunication Technology Abbreviated Journal Proc. 16th Int. Crimean Microwave and Telecommunication Technology
Volume 2 Issue Pages 684-685
Keywords NbN SSPD, SNSPD
Abstract Presented in this paper are the results of research of NbN-film superconducting single-photon detector. At 2 K temperature, quantum efficiency in the visible light (0.56 mum) reaches 30-40 %. With the wavelength increase quantum efficiency decreases and comes to  20% at 1.55 mum and  0.02% at 5.6 mum. Minimum dark counts rate is 2times10-4s-1. The jitter of detector is 35 ps. The detector was successfully implemented for integrated circuits non-invasive optical testing. It is also perspective for quantum cryptography systems
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor (down) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1447
Permanent link to this record
 

 
Author Milostnaya, I.; Korneev, A.; Rubtsova, I.; Seleznev, V.; Minaeva, O.; Chulkova, G.; Okunev, O.; Voronov, B.; Smirnov, K.; Gol'tsman, G.; Slysz, W.; Wegrzecki, M.; Guziewicz, M.; Bar, J.; Gorska, M.; Pearlman, A.; Kitaygorsky, J.; Cross, A.; Sobolewski, R.
Title Superconducting single-photon detectors designed for operation at 1.55-µm telecommunication wavelength Type Conference Article
Year 2006 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 43 Issue Pages 1334-1337
Keywords NbN SSPD, SNSPD
Abstract We report on our progress in development of superconducting single-photon detectors (SSPDs), specifically designed for secure high-speed quantum communications. The SSPDs consist of NbN-based meander nanostructures and operate at liquid helium temperatures. In general, our devices are capable of GHz-rate photon counting in a spectral range from visible light to mid-infrared. The device jitter is 18 ps and dark counts can reach negligibly small levels. The quantum efficiency (QE) of our best SSPDs for visible-light photons approaches a saturation level of ~30-40%, which is limited by the NbN film absorption. For the infrared range (1.55µm), QE is ~6% at 4.2 K, but it can be significantly improved by reduction of the operation temperature to the 2-K level, when QE reaches ~20% for 1.55-µm photons. In order to further enhance the SSPD efficiency at the wavelength of 1.55 µm, we have integrated our detectors with optical cavities, aiming to increase the effective interaction of the photon with the superconducting meander and, therefore, increase the QE. A successful effort was made to fabricate an advanced SSPD structure with an optical microcavity optimized for absorption of 1.55 µm photons. The design consisted of a quarter-wave dielectric layer, combined with a metallic mirror. Early tests performed on relatively low-QE devices integrated with microcavities, showed that the QE value at the resonator maximum (1.55-µm wavelength) was of the factor 3-to-4 higher than that for a nonresonant SSPD. Independently, we have successfully coupled our SSPDs to single-mode optical fibers. The completed receivers, inserted into a liquid-helium transport dewar, reached ~1% system QE for 1.55 µm photons. The SSPD receivers that are fiber-coupled and, simultaneously, integrated with resonators are expected to be the ultimate photon counters for optical quantum communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor (down) Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1450
Permanent link to this record