toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Verevkin, A. A.; Pearlman, A.; Slysz, W.; Zhang, J.; Sobolewski, R.; Chulkova, G.; Okunev, O.; Kouminov, P.; Drakinskij, V.; Smirnov, K.; Kaurova, N.; Voronov, B.; Gol’tsman, G.; Currie, M. url  doi
openurl 
  Title Ultrafast superconducting single-photon detectors for infrared wavelength quantum communications Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 5105 Issue Pages 160-170  
  Keywords NbN SSPD, SNSPD, applications, single-photon detector, quantum cryptography, quantum communications, superconducting devices  
  Abstract We have developed a new class of superconducting single-photon detectors (SSPDs) for ultrafast counting of infrared (IR) photons for secure quantum communications. The devices are operated on the quantum detection mechanism, based on the photon-induced hotspot formation and subsequent appearance of a transient resistive barrier across an ultrathin and submicron-wide superconducting stripe. The detectors are fabricated from 3.5-nm-thick NbN films and they operate at 4.2 K inside a closed-cycle refrigerator or liquid helium cryostat. Various continuous and pulsed laser sources have been used in our experiments, enabling us to determine the detector experimental quantum efficiency (QE) in the photon-counting mode, response time, time jitter, and dark counts. Our 3.5-nm-thick SSPDs reached QE above 15% for visible light photons and 5% at 1.3 – 1.5 μm infrared range. The measured real-time counting rate was above 2 GHz and was limited by the read-out electronics (intrinsic response time is <30 ps). The measured jitter was <18 ps, and the dark counting rate was <0.01 per second. The measured noise equivalent power (NEP) is 2 x 10-18 W/Hz1/2 at λ = 1.3 μm. In near-infrared range, in terms of the counting rate, jitter, dark counts, and overall sensitivity, the NbN SSPDs significantly outperform their semiconductor counterparts. An ultrafast quantum cryptography communication technology based on SSPDs is proposed and discussed.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Donkor, E.; Pirich, A.R.; Brandt, H.E.  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Quantum Information and Computation  
  Notes Approved no  
  Call Number Serial 1514  
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Smirnov, K.; Kouminov, P.; Voronov, B.; Kaurova, N.; Drakinsky, V.; Zhang, J.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title Fabrication of nanostructured superconducting single-photon detectors Type Journal Article
  Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 13 Issue 2 Pages 192-195  
  Keywords NbN SSPD, SNSPD  
  Abstract Fabrication of NbN superconducting single-photon detectors, based on the hotspot effect is presented. The hotspot formation arises in an ultrathin and submicrometer-width superconductor stripe and, together with the supercurrent redistribution, leads to the resistive detector response upon absorption of a photon. The detector has a meander structure to maximally increase its active area and reach the highest detection efficiency. Main processing steps, leading to efficient devices, sensitive in 0.4-5 /spl mu/m wavelength range, are presented. The impact of various processing steps on the performance and operational parameters of our detectors is discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1515  
Permanent link to this record
 

 
Author Cherednichenko, S.; Khosropanah, P.; Adam, A.; Merkel, H. F.; Kollberg, E. L.; Loudkov, D.; Gol'tsman, G. N.; Voronov, B. M.; Richter, H.; Huebers, H.-W. url  doi
openurl 
  Title 1.4- to 1.7-THz NbN hot-electron bolometer mixer for the Herschel space observatory Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 4855 Issue Pages 361-370  
  Keywords NbN HEB mixers  
  Abstract NbN hot- electron bolometer mixers have reached the level of 10hv/k in terms of the input noise temperature with the noise bandwidth of 4-6 GHz from subMM band up to 2.5 THz. In this paper we discuss the major characteristics of this kind of receiver, i.e. the gain and the noise bandwidth, the noise temperature in a wide RF band, bias regimes and optimisation of RF coupling to the quasioptical mixer. We present the status of the development of the mixer for Band 6 Low for Herschel Telescope.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Phillips, T.G.; Zmuidzinas, J.  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy  
  Notes Approved no  
  Call Number Serial 1521  
Permanent link to this record
 

 
Author Vakhtomin, Y. B.; Finkel, M. I.; Antipov, S. V.; Smirnov, K. V.; Kaurova, N. S.; Drakinskii, V. N.; Voronov, B. M.; Gol’tsman, G. N. url  openurl
  Title The gain bandwidth of mixers based on the electron heating effect in an ultrathin NbN film on a Si substrate with a buffer MgO layer Type Journal Article
  Year 2003 Publication J. of communications technol. & electronics Abbreviated Journal J. of communications technol. & electronics  
  Volume 48 Issue 6 Pages 671-675  
  Keywords NbN HEB mixers  
  Abstract Measurements of the intermediate frequency band 900 GHz of mixers based on the electron heating effect (EHE) in 2-nm- and 3.5-nm-thick superconducting NbN films sputtered on MgO and Si substrates with buffer MgO layers are presented. A 2-nm-thick superconducting NbN film with a critical temperature of 9.2 K has been obtained for the first time using a buffer MgO layer.  
  Address  
  Corporate Author Thesis  
  Publisher MAIK Nauka/Interperiodica, Birmingham, AL Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1064-2269 ISBN Medium  
  Area Expedition Conference  
  Notes https://elibrary.ru/item.asp?id=17302119 (Полоса преобразования смесителей на эффекте разогрева электронов в ультратонких пленках NbN на подложках из Si с подслоем MgO) Approved no  
  Call Number Vakhtomin2003 Serial 1522  
Permanent link to this record
 

 
Author Hübers, Heinz-Wilhelm; Semenov, A.; Richter, H.; Smirnov, K.; Gol'tsman, G.; Voronov, B. url  openurl
  Title Phonon cooled far-infrared hot electron bolometer mixer Type Abstract
  Year 2002 Publication NASA/ADS Abbreviated Journal NASA/ADS  
  Volume Issue Pages  
  Keywords NbN HEB mixers  
  Abstract Heterodyne receivers for applications in astronomy need quantum-limited sensitivity. At frequencies above 1.4 THz superconducting hot electron bolometers (HEB) can be used to achieve this goal. We present results of the development of a quasi-optical phonon-cooled NbN HEB mixer for GREAT, the German heterodyne receiver for SOFIA. Different mixers with logarithmic spiral and double slot feed antennas have been investigated with respect to their noise temperature, conversion loss, linearity and beam pattern at several frequencies between 0.7 THz and 5.2 THz. At 2.5 THz a double sideband noise temperature of 2200 K was achieved. The conversion loss was 16 dB. The response of the mixer was linear up to 400 K load temperature. This performance was verified by measuring an emission line of methanol at 2.5 THz. The results demonstrate that the NbN HEB is very well suited as a mixer for FIR heterodyne receivers.  
  Address Monterey, CA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Far-IR, Sub-mm & MM Detector Technology Workshop, 1-3 April 2002  
  Notes id.37 Approved no  
  Call Number Serial 1534  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol'tsman, G. N.; Voronov, B. M. url  doi
openurl 
  Title 2.5 THz heterodyne receiver with NbN hot-electron-bolometer mixer Type Journal Article
  Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.  
  Volume 372-376 Issue Pages 448-453  
  Keywords NbN HEB mixers, applications  
  Abstract We describe a 2.5 THz heterodyne receiver for applications in astronomy and atmospheric research. The receiver employs a superconducting NbN phonon-cooled hot-electron-bolometer mixer and an optically pumped far-infrared gas laser as local oscillator. 2200 K double sideband mixer noise temperature was measured at 2.5 THz across a 1 GHz intermediate frequency bandwidth centred at 1.5 GHz. The total conversion losses were 17 dB. The mixer response was linear at load temperatures smaller than 400 K. The receiver was tested in the laboratory environment by measuring the methanol line in emission. Observed pressure broadening confirms the true heterodyne detection regime of the mixer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1526  
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Merkel, H.; Khosropanah, P.; Adam, A.; Kollberg, E.; Loudkov, D.; Gol'tsman, G.; Voronov, B.; Richter, H.; Huebers, H.-W. url  doi
openurl 
  Title 1.6 THz heterodyne receiver for the far infrared space telescope Type Journal Article
  Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.  
  Volume 372-376 Issue Pages 427-431  
  Keywords NbN HEB mixers, applications  
  Abstract A low noise heterodyne receiver is being developed for the terahertz range using a phonon-cooled hot-electron bolometric mixer based on 3.5 nm thick superconducting NbN film. In the 1–2 GHz intermediate frequency band the double-sideband receiver noise temperature was 450 K at 0.6 THz, 700 K at 1.6 THz and 1100 K at 2.5 THz. In the 3–8 GHz IF band the lowest receiver noise temperature was 700 K at 0.6 THz, 1500 K at 1.6 THz and 3000 K at 2.5 THz while it increased by a factor of 3 towards 8 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1527  
Permanent link to this record
 

 
Author Gol’tsman, G. N.; Okunev, O.; Chulkova, G.; Lipatov, A.; Semenov, A.; Smirnov, K.; Voronov, B.; Dzardanov, A.; Williams, C.; Sobolewski, R. url  doi
openurl 
  Title Picosecond superconducting single-photon optical detector Type Journal Article
  Year 2001 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 79 Issue 6 Pages 705-707  
  Keywords NbN SSPD, SNSPD  
  Abstract We experimentally demonstrate a supercurrent-assisted, hotspot-formation mechanism for ultrafast detection and counting of visible and infrared photons. A photon-induced hotspot leads to a temporary formation of a resistive barrier across the superconducting sensor strip and results in an easily measurable voltage pulse. Subsequent hotspot healing in ∼30 ps time frame, restores the superconductivity (zero-voltage state), and the detector is ready to register another photon. Our device consists of an ultrathin, very narrow NbN strip, maintained at 4.2 K and current-biased close to the critical current. It exhibits an experimentally measured quantum efficiency of ∼20% for 0.81 μm wavelength photons and negligible dark counts.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1543  
Permanent link to this record
 

 
Author Hübers, H.-W.; Schubert, J.; Krabbe, A.; Birk, M.; Wagner, G.; Semenov, A.; Gol’tsman, G.; Voronov, B.; Gershenzon, E. url  doi
openurl 
  Title Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies Type Journal Article
  Year 2001 Publication Infrared Physics & Technology Abbreviated Journal Infrared Physics & Technology  
  Volume 42 Issue 1 Pages 41-47  
  Keywords NbN HEB mixers, anti-reflection coating  
  Abstract Parylene C was investigated as anti-reflection coating for silicon at terahertz frequencies. Measurements with a Fourier-transform spectrometer show that the transmittance of pure silicon can be improved by about 30% when applying a layer of Parylene C with a quarter wavelength optical thickness. The 10% bandwidth of this coating extends from 1.5 to 3 THz for a center frequency of 2.3–2.5 THz, where the transmittance is constant. Heterodyne measurements demonstrate that the noise temperature of a hot-electron-bolometric mixer can be reduced significantly by coating the silicon lens of the hybrid antenna with a quarter wavelength Parylene C layer. Compared to the same mixer with an uncoated lens the improvement is about 30% at a frequency of 2.5 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1350-4495 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1548  
Permanent link to this record
 

 
Author Huebers, H.-W.; Semenov, A.; Schubert, J.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.; Krabbe, A.; Roeser, H.-P. url  doi
openurl 
  Title NbN hot-electron bolometer as THz mixer for SOFIA Type Conference Article
  Year 2000 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 4014 Issue Pages 195-202  
  Keywords NbN HEB mixers, airborne, stratospheric observatory, SOFIA  
  Abstract Heterodyne receivers for applications in astronomy need quantum limited sensitivity. We have investigated phonon- cooled NbN hot electron bolometric mixers in the frequency range from 0.7 THz to 5.2 THz. The devices were 3.5 nm thin films with an in-plane dimension of 1.7 X 0.2 micrometers 2 integrated in a complementary logarithmic spiral antenna. The best measured DSB receiver noise temperatures are 1300 K (0.7 THz), 2000 K (1.4 THz), 2100 K (1.6 THz), 2600 K (2.5 THz), 4000 K (3.1 THz), 5600 K (4.3 THz), and 8800 K (5.2 THz). The sensitivity fluctuation, the long term stability, and the antenna pattern were measured. The results demonstrate that this mixer is very well suited for GREAT, the German heterodyne receiver for SOFIA.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Melugin, R.K.; Roeser, H.-P.  
  Language Summary Language Original Title  
  Series Editor Series Title (up) Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Airborne Telescope Systems  
  Notes Approved no  
  Call Number Serial 1554  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: