toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Lieberzeit, Peter A.; Dickert, Franz L. url  doi
openurl 
  Title Chemosensors in environmental monitoring: challenges in ruggedness and selectivity Type Journal Article
  Year 2009 Publication Analytical and Bioanalytical Chemistry Abbreviated Journal Anal Bioanal Chem  
  Volume 393 Issue 2 Pages 467-472  
  Keywords environmental monitoring, in situ sensing, artificial recognition materials, real-life application, molecular imprinting, QCM  
  Abstract Environmental analysis is a potential key application for chemical sensors owing to their inherent ability to detect analytes on-line and in real time in distributed systems. Operating a chemosensor in a natural environment poses substantial challenges in terms of ruggedness, long-term stability and calibration. This article highlights current trends of achieving both the necessary selectivity and ruggedness: one way is deploying sensor arrays consisting of robust broadband sensors and extracting information via chemometrics. If using only a single sensor is desired, molecularly imprinted polymers offer a straightforward way for designing artificial recognition materials. Molecularly imprinted polymers can be utilized in real-life environments, such as water and air, aiming at detecting analytes ranging from small molecules to entire cells.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1618-2642 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 564  
Permanent link to this record
 

 
Author Rodriguez-Morales, F.; Zannoni, R.; Nicholson, J.; Fischetti, M.; Yngvesson, K. S.; Appenzeller, J. url  doi
openurl 
  Title Direct and heterodyne detection of microwaves in a metallic single wall carbon nanotube Type Journal Article
  Year 2006 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 89 Issue 8 Pages 083502  
  Keywords carbon nanotube, GHz heterodyne detector, direct detector  
  Abstract  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 565  
Permanent link to this record
 

 
Author Fu, K.; Zannoni, R.; Chan, C.; Adams, S. H.; Nicholson, J.; Polizzi, E.; Yngvesson, K. S. url  doi
openurl 
  Title Terahertz detection in single wall carbon nanotubes Type Journal Article
  Year 2008 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 92 Issue 3 Pages 033105  
  Keywords HEB, single wall, carbon nanotube, CNT, SWNT, SWCNT, terahertz detection, THz  
  Abstract It is reported that terahertz radiation from 0.69 to 2.54 THz has been sensitively detected in a device consisting of bundles of carbon nanotubes containing single wall metallic carbon nanotubes, quasioptically coupled through a lithographically fabricated antenna, and a silicon lens. The measured data are consistent with a bolometric detection process in the metallic tubes and the devices show promise for operation well above 4.2 K.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes NEP is not shown Approved no  
  Call Number Serial 566  
Permanent link to this record
 

 
Author Parrott, Edward P. J.; Zeitler, J. Axel; Fris<cc><152>c<cc><152>ic<cc><81>, Tomislav; Pepper, Michael; Jones, William; Day, Graeme M.; Gladden, Lynn F. url  doi
openurl 
  Title Testing the sensitivity of terahertz spectroscopy to changes in molecular and supramolecular structure: a study of structurally similar cocrystals Type Journal Article
  Year 2009 Publication Crystal Growth & Design Abbreviated Journal Crystal Growth & Design  
  Volume 9 Issue 3 Pages 1452-1460  
  Keywords supramolecular recognition, infrared, terahertz, IR, THz, TDS  
  Abstract Terahertz time-domain-spectroscopy (THz-TDS) has emerged as a versatile spectroscopic technique, and an alternative to powder X-ray diffraction in the characterization of molecular crystals. We tested the ability of terahertz spectroscopy to distinguish between chiral and racemic hydrogen-bonded cocrystals that are similar in molecular and supramolecular structure. Terahertz spectroscopy readily distinguished between the isostructural cocrystals of theophylline with chiral and racemic forms of malic acid which are almost identical in molecular structure and supramolecular architecture. Similarly, the cocrystals of theophylline with chiral and racemic forms of tartaric acid, which are similar at the molecular level but dissimilar in crystal packing, were distinguished unequivocally. The investigation of the same cocrystals using X-ray powder diffraction and Raman spectroscopy suggested that THz-TDS is comparable in sensitivity to diffraction methods and more sensitive than Raman spectroscopy to changes in cocrystal architecture. The differences in spectra acquired by THz-TDS could be further enhanced by cooling the samples to 109 K.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1528-7483 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 567  
Permanent link to this record
 

 
Author Lieberzeit, P.; Afzal, A.; Rehman, A.; Dickert, F. url  doi
openurl 
  Title Nanoparticles for detecting pollutants and degradation processes with mass-sensitive sensors Type Journal Article
  Year 2007 Publication Sensors and Actuators B: Chemical Abbreviated Journal Sensors and Actuators B: Chemical  
  Volume 127 Issue 1 Pages 132-136  
  Keywords molecular imprinted polymer, MIP, recognition, quartz crystal microbalance, QCM, mass-sensitive sensor, detector  
  Abstract Compared with thin films, nanoparticle layers as coatings for QCM offer substantially increased interaction areas and sensitivities with favourable response times. Molybdenum disulphide (MoS2), e.g. has turned out to be a highly suitable material for interacting with thiols. The resulting materials are sufficiently soft according to Pearson to bind sulphur containing compounds reversibly. Depositing MoS2 nanoparticle submonolayers (particle size 200–300 nm) leads to an increase in sensor response by a factor of ten compared to a pure gold layer. Additionally, the nanoparticle layers show fully reversible sensor signals. Particle synthesis can also be combined with the molecular imprinting approach: by a precipitation technique, it is possible to generate molecularly imprinted TiO2 particles for engine oil degradation measurements. Compared with deposited thin layers, particles incorporate oxidised compounds from lubricants by a factor of two better.  
  Address  
  Corporate Author Thesis (up)  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0925-4005 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 568  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: