toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Cherednichenko, S.; Khosropanah, P.; Adam, A.; Merkel, H. F.; Kollberg, E. L.; Loudkov, D.; Gol'tsman, G. N.; Voronov, B. M.; Richter, H.; Huebers, H.-W. url  doi
openurl 
  Title (up) 1.4- to 1.7-THz NbN hot-electron bolometer mixer for the Herschel space observatory Type Conference Article
  Year 2003 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 4855 Issue Pages 361-370  
  Keywords NbN HEB mixers  
  Abstract NbN hot- electron bolometer mixers have reached the level of 10hv/k in terms of the input noise temperature with the noise bandwidth of 4-6 GHz from subMM band up to 2.5 THz. In this paper we discuss the major characteristics of this kind of receiver, i.e. the gain and the noise bandwidth, the noise temperature in a wide RF band, bias regimes and optimisation of RF coupling to the quasioptical mixer. We present the status of the development of the mixer for Band 6 Low for Herschel Telescope.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Phillips, T.G.; Zmuidzinas, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Millimeter and Submillimeter Detectors for Astronomy  
  Notes Approved no  
  Call Number Serial 1521  
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Merkel, H.; Khosropanah, P.; Adam, A.; Kollberg, E.; Loudkov, D.; Gol'tsman, G.; Voronov, B.; Richter, H.; Huebers, H.-W. url  doi
openurl 
  Title (up) 1.6 THz heterodyne receiver for the far infrared space telescope Type Journal Article
  Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.  
  Volume 372-376 Issue Pages 427-431  
  Keywords NbN HEB mixers, applications  
  Abstract A low noise heterodyne receiver is being developed for the terahertz range using a phonon-cooled hot-electron bolometric mixer based on 3.5 nm thick superconducting NbN film. In the 1–2 GHz intermediate frequency band the double-sideband receiver noise temperature was 450 K at 0.6 THz, 700 K at 1.6 THz and 1100 K at 2.5 THz. In the 3–8 GHz IF band the lowest receiver noise temperature was 700 K at 0.6 THz, 1500 K at 1.6 THz and 3000 K at 2.5 THz while it increased by a factor of 3 towards 8 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1527  
Permanent link to this record
 

 
Author Ren, Y.; Zhang, D. X.; Zhou, K. M.; Miao, W.; Zhang, W.; Shi, S. C.; Seleznev, V.; Pentin, I.; Vakhtomin, Y.; Smirnov, K. url  doi
openurl 
  Title (up) 10.6 μm heterodyne receiver based on a superconducting hot-electron bolometer mixer and a quantum cascade laser Type Journal Article
  Year 2019 Publication AIP Advances Abbreviated Journal AIP Advances  
  Volume 9 Issue 7 Pages 075307  
  Keywords NbN HEB mixers, QCL, IR  
  Abstract We report on the development of a heterodyne receiver at mid-infrared wavelength for high-resolution spectroscopy applications. The receiver employs a superconducting NbN hot electron bolometer as a mixer and a room temperature distributed feedback quantum cascade laser operating at 10.6 μm (28.2 THz) as a local oscillator. The stabilization of the heterodyne receiver has been achieved using a feedback loop controlling the output power of the laser. Improved Allan variance times as well as a double sideband receiver noise temperature of 5000 K and a noise bandwidth of 2.8 GHz of the receiver system are demonstrated.

The work is supported in part by the National Key R&D Program of China under Grant 2018YFA0404701, by the CAS program under Grant QYZDJ-SSW-SLH043 and GJJSTD20180003, by the National Natural Science Foundation of China (NSFC) under Grant 11773083, by the “Hundred Talents Program” of the “Pioneer Initiative”, and in part by the CAS Key Lab for Radio Astronomy.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2158-3226 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1293  
Permanent link to this record
 

 
Author Schwaab, G.W.; Auen, K.; Bruendermann, E.; Feinaeugle, R.; Gol’tsman, G.N.; Huebers, H.-W.; Krabbe, A.; Roeser, H.-P.; Sirmain, G. url  doi
openurl 
  Title (up) 2- to 6-THz heterodyne receiver array for the Stratospheric Observatory for Infrared Astronomy (SOFIA) Type Conference Article
  Year 1998 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 3357 Issue Pages 85-96  
  Keywords NbN HEB mixers, applications, stratospheric observatory, airborne  
  Abstract The Institute of Space Sensor Technology of the German Aerospace Center (DLR) is developing a heterodyne array receiver for the frequency range 2 to 6 THz for the Stratospheric Observatory for Infrared Astronomy (SOFIA). Key science issues in that frequency range are the observation of lines of atoms [e.g. (OI)], ions [e.g. (CII), (NII)], and molecules (e.g. OH, HD, CO) with high spectral resolution to study the dynamics and evolution of galactic and extragalactic objects. Long term goal is the development of an integrated array heterodyne receiver with superconducting hot electron bolometric (HEB) mixers and p-type Ge or Si lasers as local oscillators. The first generation receiver will be composed of HEB mixers in a 2 pixel 2 polarization array which will be pumped by a gas laser local oscillator. Improved Schottky diode mixers are the backup solution for the HEBs. The state of the art of HEB mixer and p-type Ge laser technology are described as well as possible improvements in the ’conventional’ optically pumped far-infrared laser and Schottky diode mixer technology. Finally, the frequency coverage of the first generation heterodyne receiver for some important astronomical transitions is discussed. The expected sensitivity is compared to line fluxes measured by the ISO satellite.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Phillips, T.G.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Advanced Technology MMW, Radio, and Terahertz Telescopes  
  Notes Approved no  
  Call Number Serial 1583  
Permanent link to this record
 

 
Author Semenov, A. D.; Hübers, H.-W.; Richter, H.; Birk, M.; Krocka, M.; Mair, U.; Smirnov, K.; Gol'tsman, G. N.; Voronov, B. M. url  doi
openurl 
  Title (up) 2.5 THz heterodyne receiver with NbN hot-electron-bolometer mixer Type Journal Article
  Year 2002 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.  
  Volume 372-376 Issue Pages 448-453  
  Keywords NbN HEB mixers, applications  
  Abstract We describe a 2.5 THz heterodyne receiver for applications in astronomy and atmospheric research. The receiver employs a superconducting NbN phonon-cooled hot-electron-bolometer mixer and an optically pumped far-infrared gas laser as local oscillator. 2200 K double sideband mixer noise temperature was measured at 2.5 THz across a 1 GHz intermediate frequency bandwidth centred at 1.5 GHz. The total conversion losses were 17 dB. The mixer response was linear at load temperatures smaller than 400 K. The receiver was tested in the laboratory environment by measuring the methanol line in emission. Observed pressure broadening confirms the true heterodyne detection regime of the mixer.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4534 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1526  
Permanent link to this record
 

 
Author Cherednichenko, S.; Drakinskiy, V.; Baubert, J.; Lecomte, B.; Dauplay, F.; Krieg, J.-M.; Delorme, Y.; Feret, A.; Hübers, H.-W.; Semenov, A. D.; Gol’tsman, G. N. url  openurl
  Title (up) 2.5 THz multipixel heterodyne receiver based on NbN HEB mixers Type Abstract
  Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 18th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 112  
  Keywords NbN HEB mixers  
  Abstract A 16 pixel heterodyne receiver for 2.5 THz has been developed based on NbN superconducting hot-electron bolometer (HEB) mixers. The receiver uses a quasioptical RF coupling approach where HEB mixers are integrated into double dipole antennas on 1.5μm thick Si3N4 / SiO2 membranes. Spherical mirrors (one per pixel) and backshort distance from the antenna have been used to design the output mixer beam profile. The camera design allows all 16 pixel IF readout in parallel. Measurements of the mixers sensitivity and the input RF band are presented, and compared against calculations.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1419  
Permanent link to this record
 

 
Author Svechnikov, S. I.; Okunev, O. V.; Yagoubov, P. A.; Gol'tsman, G. N.; Voronov, B. M.; Cherednichenko, S. I.; Gershenzon, E. M.; Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S. url  doi
openurl 
  Title (up) 2.5 THz NbN hot electron mixer with integrated tapered slot antenna Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages 3548-3551  
  Keywords NbN HEB mixers  
  Abstract A Hot Electron Bolometer (HEB) mixer for 2.5 THz utilizing a NbN thin film device, integrated with a Broken Linearly Tapered Slot Antenna (BLTSA), has been fabricated and is presently being tested. The NbN HEB device and the antenna were fabricated on a SiO2membrane. A 0.5 micrometer thick SiO2layer was grown by rf magnetron reactive sputtering on a GaAs wafer. The HEB device (phonon-cooled type) was produced as several parallel strips, 1 micrometer wide, from an ultrathin NbN film 4-7 nm thick, that was deposited onto the SiO2layer by dc magnetron reactive sputtering. The BLTSA was photoetched in a multilayer Ti-Au metallization. In order to strengthen the membrane, the front-side of the wafer was coated with a 5 micrometer thick polyimide layer just before the membrane formation. The last operation was anisotropic etching of the GaAs in a mixture of HNO3and H2O2.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1595  
Permanent link to this record
 

 
Author Ekström, H.; Karasik, B.; Kollberg, E.; Gol'tsman, G.; Gershenzon, E. url  openurl
  Title (up) 350 GHz NbN hot electron bolometer mixer Type Conference Article
  Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 269-283  
  Keywords NbN HEB mixers  
  Abstract Superconducting NbN hot-electron bolometer (HEB) mixer devices have been fabricated and measured at 350 GHz. The HEB is integrated with a double dipole antenna on an extended crystalline quartz hyper hemispherical substrate lens. Heterodyne measurement gave a -3 dB bandwidth, mainly determined by the electron- phonon interaction time, of about 680 and 1000 MHz for two different films with Tc = 8.5 and 11 K respectively. The measured DSB receiver noise temperature is around 3000 K at 800 MHz IF frequency. The main contribution to the output noise from the device is due to electron temperature fluctuations with the equivalent output noise temperature TFL-100 K. TH, has the same frequency dependence as the IF response. The contribution from Johnson noise is of the order of T. The RF coupling loss is estimated to be = 6 dB. The film with lower Tc, had an estimated intrinsic low-frequency conversion loss = 7 dB, while the other film had a conversion loss as high as 14 dB. The difference in intrinsic conversion loss is explained by less uniform absorption of radiation. Measurements of the small signal impedance shows a transition of the output impedance from the DC differential resistance Rd=dV/dI in the low frequency limit to the DC resistance R 0 =Uoff 0 in the bias point for frequencies above 3 GHz. We judge that the optimum shape of the IV-characteristic is more easily obtained at THz frequencies where the main restriction in performance should come from problems with the RF coupling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1628  
Permanent link to this record
 

 
Author Meledin, D. V.; Marrone, D. P.; Tong, C.-Y. E.; Gibson, H.; Blundell, R.; Paine, S. N.; Papa, D.C.; Smith, M.; Hunter, T. R.; Battat, J.; Voronov, B.; Gol'tsman, G. url  doi
openurl 
  Title (up) A 1-THz superconducting hot-electron-bolometer receiver for astronomical observations Type Journal Article
  Year 2004 Publication IEEE Trans. Microwave Theory Techn. Abbreviated Journal IEEE Trans. Microwave Theory Techn.  
  Volume 52 Issue 10 Pages 2338-2343  
  Keywords NbN HEB mixer, applications  
  Abstract In this paper, we describe a superconducting hot-electron-bolometer mixer receiver developed to operate in atmospheric windows between 800-1300 GHz. The receiver uses a waveguide mixer element made of 3-4-nm-thick NbN film deposited over crystalline quartz. This mixer yields double-sideband receiver noise temperatures of 1000 K at around 1.0 THz, and 1600 K at 1.26 THz, at an IF of 3.0 GHz. The receiver was successfully tested in the laboratory using a gas cell as a spectral line test source. It is now in use on the Smithsonian Astrophysical Observatory terahertz test telescope in northern Chile.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9480 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1484  
Permanent link to this record
 

 
Author Tong, C.-Y. E.; Meledin, D.; Loudkov, D.; Blundell, R.; Erickson, N.; Kawamura, J.; Mehdi, I.; Gol’tsman, G. url  doi
openurl 
  Title (up) A 1.5 THz Hot-Electron Bolometer mixer operated by a planar diode based local oscillator Type Conference Article
  Year 2003 Publication IEEE MTT-S Int. Microwave Symp. Digest Abbreviated Journal IEEE MTT-S Int. Microwave Symp. Digest  
  Volume 2 Issue Pages 751-754  
  Keywords waveguide NbN HEB mixers  
  Abstract We have developed a 1.5 THz superconducting NbN Hot-Electron Bolometer mixer. It is operated by an all-solid-state Local Oscillator comprising of a cascade of 4 planar doublers following an MMIC based W-band power amplifier. The threshold available pump power is estimated to be 1 /spl mu/W.  
  Address Philadelphia, PA, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1516  
Permanent link to this record
 

 
Author Tong, C.-Y. Edward; Meledin, Denis; Blundell, Raymond; Erickson, Neal; Kawamura, Jonathan; Mehdi, Imran; Gol'tsman, Gregory url  openurl
  Title (up) A 1.5 THz hot-electron bolometer mixer operated by a planar diode-based local oscillator Type Abstract
  Year 2003 Publication Proc. 14th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 14th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 286  
  Keywords waveguide NbN HEB mixers  
  Abstract We describe a 1.5 THz heterodyne receiver based on a superconductin g hot-electron bolometer mixer, which is pumped by an all-solid-state local oscillator chain. The bolometer is fabricated from a 3.5 nm-thick niobium nitride film deposited on a quartz substrate with a 200 nm-thick magnesium oxide buffer layer. The bolometer measures 0.15 fun in width and 1.5 1..tm in length. The chip consisting of the bolometer and mixer circuitry is incorporated in a fixed-tuned waveguide mixer block with a corru g ated feed horn. The local oscillator unit comprises of a cascade of four planar doublers followin g a MMIC-based W-band power amplifier. The local oscillator is coupled to the mixer using a Martin-Puplett interferometer. The local oscillator output power needed for optimal receiver performance is approximately 1 to 2 11W, and the chain is able to provide this power at a number of frequency points between 1.45 and 1.56 THz. By terminating the rf input with room temperature and 77 K loads, a Y-factor of 1.11 (DSB) has been measured at a local oscillator frequency of 1.476 THz at 3 GHz intermediate frequency.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1501  
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Khosropanah, P.; Adam, A.; Merkel, H.; Kolberg, E.; Loudkov, D.; Voronov, B.; Gol'tsman, G.; Richter, H.; Hübers, H. W. url  openurl
  Title (up) A broadband terahertz heterodyne receiver with an NbN HEB mixer Type Conference Article
  Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 85-95  
  Keywords NbN HEB mixers  
  Abstract We present a broadband and low noise heterodyne receiver for 1.4-1.7 THz designed for the Hershel Space Observatory. A phonon- cooled NbN HEB mixer was integrated with a normal metal double- slot antenna and an elliptical silicon lens. DSB receiver noise temperature Tr was measured from 1 GHz through 8GHz intermediate frequency band with 50 MHz instantaneous bandwidth. At 4.2 K bath temperature and at 1.6 THz LO frequency Tr is 800 K with the receiver noise bandwidth of 5 GHz. While at 2 K bath temperature Tr was as low as 700 K. At 0.6 THz and 1.1 THz a spiral antenna integrated NbN HEB mixer showed the receiver noise temperature 500 K and 800 K, though no antireflection coating was used in this case. Tr of 1100 K was achieved at 2.5 THz while the receiver noise bandwidth was 4 GHz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Cambridge, MA, USA Editor Harward University  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 332  
Permanent link to this record
 

 
Author Tong, C. Edward; Trifonov, Andrey; Blundell, Raymond; Shurakov, Alexander; Gol’tsman, Gregory url  openurl
  Title (up) A digital terahertz power meter based on an NbN thin film Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 170  
  Keywords waveguide NbN HEB mixers  
  Abstract We have further studied the effect of subjecting a superconducting Hot Electron Bolometer (HEB) element made from an NbN thin film to microwave radiation. Since the photon energy is weak, the microwave radiation does not simply heat the film, but generates a bi-static state, switching between the superconducting and normal states, upon the application of a small voltage bias. Indeed, a relaxation oscillation of a few MHz has previously been reported in this regime [1]. Switching between the superconducting and normal states modulates the reflected microwave pump power from the device. A simple homodyne setup readily recovers the spontaneous switching waveform in the time domain. The switching frequency is a function of both the bias voltage (DC heating) and the applied microwave power. In this work, we use a 0.8 THz HEB waveguide mixer for the purpose of demonstration. The applied microwave pump, coupled through a directional coupler, is at 1 GHz. Since the pump power is of the order of a few μW, a room temperature amplifier is sufficient to amplify the reflected pump power from the HEB mixer, which beats with the microwave source in a homodyne set-up. After further amplification, the switching waveform is passed onto a frequency counter. The typical frequency of the switching pulses is 3-5 MHz. It is found that the digital frequency count increases with higher microwave pump power. When the HEB mixer is subjected to additional optical power at 0.8 THz, the frequency count also increases. When we vary the incident optical power by using a wire grid attenuator, a linear relationship is observed between the frequency count and the applied optical power, over at least an order of magnitude of power. This phenomenon can be exploited to develop a digital power meter, using a very simple electronics setup. Further experiments are under way to determine the range of linearity and the accuracy of calibration transfer from the microwave to the THz regime. References 1. Y. Zhuang, and S. Yngvesson, “Detection and interpretation of bistatic effects in NbN HEB devices,” Proc. 13 th Int. Symp. Space THz Tech., 2002, pp. 463–472.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1366  
Permanent link to this record
 

 
Author Blundell, R.; Kawamura, J. H.; Tong, C. E.; Papa, D. C.; Hunter, T. R.; Gol’tsman, G. N.; Cherednichenko, S. I.; Voronov, B. M.; Gershenzon, E. M. url  doi
isbn  openurl
  Title (up) A hot-electron bolometer mixer receiver for the 680-830 GHz frequency range Type Conference Article
  Year 1998 Publication Proc. 6-th Int. Conf. Terahertz Electron. Abbreviated Journal Proc. 6-th Int. Conf. Terahertz Electron.  
  Volume Issue Pages 18-20  
  Keywords NbN HEB mixers  
  Abstract We describe a heterodyne receiver designed to operate in the partially transparent atmospheric windows centered on 680 and 830 GHz. The receiver incorporates a niobium nitride thin film, cooled to 4.2 K, as the phonon-cooled hot-electron mixer element. The double sideband receiver noise, measured over the frequency range 680-830 GHz, is typically 700-1300 K. The instantaneous output bandwidth of the receiver is 600 MHz. This receiver has recently been used at the SubMillimeter Telescope, jointly operated by the Steward Observatory and the Max Planck Institute for Radioastronomy, for observations of the neutral carbon and CO spectral lines at 810 GHz and at 806 and 691 GHz respectively. Laboratory measurements on a second mixer in the same test receiver have yielded extended high frequency performance to 1 THz.  
  Address Leeds, UK  
  Corporate Author Thesis  
  Publisher IEEE Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 0-7803-4903-2 Medium  
  Area Expedition Conference IEEE Sixth International Conference on Terahertz Electronics Proceedings. THZ 98. (Cat. No.98EX171)  
  Notes Approved no  
  Call Number Serial 1581  
Permanent link to this record
 

 
Author Shurakov, Alexander; Tong, Cheuk-yu E.; Blundell, Raymond; Gol’tsman, Gregory url  openurl
  Title (up) A microwave pumped HEB direct detector using a homodyne readout scheme Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 129  
  Keywords waveguide NbN HEB detector, NEP  
  Abstract We report the results of our study on the noise performance of a fast THz detector based on the repurpose of hot electron bolometer mixer (HEB). Instead of operating with an elevated bath temperature, microwave power is injected into the HEB device, which enhances the sensitivity of the detector and at the same time provide a mechanism for reading out impedance changes of the device induced by the modulated incident THz radiation [1]. We have demonstrated an improvement of the detector’s optical noise equivalent power (NEP). Furthermore, by introducing a homodyne readout scheme based on a room temperature microwave mixer, the dynamic range of the detector is increased. The HEB devices used in this work were made of 4 nm thick NbN film. The detector chips were installed into a waveguide mixer block fitted with a corrugated horn, mounted on the cold plate of a liquid helium cryostat. The HEBs were operated at a bath temperature of 4.2 K. The signal beam was terminated on black bodies at ambient and liquid nitrogen temperatures. A chopper wheel placed in front of the cryostat window operating at a frequency of 1.48 kHz modulated the input load temperature of the detector. A cold mesh filter, centered at 830 GHz, was used to define the input signal power bandwidth. Microwave was injected through a broadband directional coupler inside the cryostat. Our experiments were mostly conducted at a pump frequency of 1.5 GHz. The reflected microwave power from the HEB device was fed into a cryogenic low noise amplifier (LNA). The output of the LNA was connected to the RF input port of a room temperature microwave mixer, which beat the reflected signal from the HEB using a copy of the original 1.5 GHz injection signal in a homodyne demodulation scheme. The amplitude of the detected power was measured by a lock-in amplifier, which was synchronized to the chopper frequency. Preliminary results yield an optical NEP of ~1 pW/ Hz 1/2 which corresponds to an improvement of a factor of 3 compared to [1], driven mainly by a lowering of the system noise floor. The dynamic range was also increased by similar amount. References 1. A. Shurakov et al. “A Microwave Pumped Hot Electron Bolometric Direct Detector,” submitted on Oct 18, 2013 to Appl. Phys. Let.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1365  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: