toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shcheslavskiy, V.; Morozov, P.; Divochiy, A.; Vakhtomin, Y.; Smirnov, K.; Becker, W. url  doi
openurl 
  Title (up) Erratum: “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector” [Rev. Sci. Instrum. 87, 053117 (2016)] Type Miscellaneous
  Year 2016 Publication Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.  
  Volume 87 Issue 6 Pages 069901  
  Keywords SSPD, SNSPD, TCSPC, jitter  
  Abstract In the original paper1the Ref. 10 should be M. Sanzaro, N. Calandri, A. Ruggeri, C. Scarcella, G. Boso, M. Buttafava, and A. Tosi, Proc. SPIE9370, 93701T (2015).  
  Address Becker & Hickl GmbH, Nahmitzer Damm 30, Berlin 12277, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-6748 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:27370512 Approved no  
  Call Number Serial 1810  
Permanent link to this record
 

 
Author Zinoni, C.; Alloing, B.; Li, L. H.; Marsili, F.; Fiore, A.; Lunghi, L.; Gerardino, A.; Vakhtomin, Y. B.; Smirnov, K. V.; Gol’tsman, G. N. url  doi
openurl 
  Title (up) Erratum: “Single photon experiments at telecom wavelengths using nanowire superconducting detectors” [Appl. Phys. Lett. 91, 031106 (2007)] Type Journal Article
  Year 2010 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 96 Issue 8 Pages 089901  
  Keywords SSPD, SNSPD, erratum  
  Abstract A calculation error was made in the original publication of this letter. The error was in the calculation of the noise equivalent power (NEP) values for the avalanche photodiode detector (APD) and the superconducting single photon detector (SSPD), the incorrect values were plotted on the right axis in Fig. 1(b). The correct NEP values were calculated with the same equation reported in the original letter and the revised Fig. 1(b) is shown below. The other conclusions of the paper remain unaltered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1395  
Permanent link to this record
 

 
Author Kuznetsov, K. A.; Kornienko, V. V.; Vakhtomin, Y. B.; Pentin, I. V.; Smirnov, K. V.; Kitaeva, G. K. url  doi
openurl 
  Title (up) Generation and detection of optical-terahertz biphotons via spontaneous parametric downconversion Type Conference Article
  Year 2018 Publication Proc. ICLO Abbreviated Journal Proc. ICLO  
  Volume Issue Pages 303  
  Keywords NbN HEB applications  
  Abstract We study spontaneous parametric downconversion (SPDC) in the strongly non-degenerate regime when the idler wave hits the terahertz range. By using the hot-electron bolometer, for the first time the SPDC-generated idler-wave photons were directly detected in the terahertz frequency range. Spectrum of corresponding signal photons was measured using standard technique by the CCD camera. Possible applications of correlated optical-terahertz biphotons are discussed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference International Conference Laser Optics  
  Notes Approved no  
  Call Number Serial 1806  
Permanent link to this record
 

 
Author Moshkova, M. A.; Morozov, P. V.; Antipov, A. V.; Vakhtomin, Y. B.; Smirnov, K. V. url  doi
openurl 
  Title (up) High-efficiency multi-element superconducting single-photon detector Type Conference Article
  Year 2021 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 11771 Issue Pages 2-8  
  Keywords PNR SSPD, large active area, detection efficiency  
  Abstract We present the result of the creation and investigation of the multi-element superconducting single photon detectors, which can recognize the number of photons (up to six) in a short pulse of the radiation at telecommunication wavelengths range. The best receivers coupled with single-mode fiber have the system quantum efficiency of ⁓85%. The receivers have a 100 ps time resolution and a few nanoseconds dead time that allows them to operate at megahertz counting rate. Implementation of the multi-element architecture for creation of the superconducting single photon detectors with increased sensitive area allows to create the high efficiency receivers coupled with multi-mode fibers and with preserving of the all advantages of superconducting photon counters.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Prochazka, I.; Štefaňák, M.; Sobolewski, R.; Gábris, A.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Quantum Optics and Photon Counting  
  Notes Approved no  
  Call Number Serial 1795  
Permanent link to this record
 

 
Author Moshkova, M.; Divochiy, A.; Morozov, P.; Vakhtomin, Y.; Antipov, A.; Zolotov, P.; Seleznev, V.; Ahmetov, M.; Smirnov, K. url  doi
openurl 
  Title (up) High-performance superconducting photon-number-resolving detectors with 86% system efficiency at telecom range Type Journal Article
  Year 2019 Publication J. Opt. Soc. Am. B Abbreviated Journal J. Opt. Soc. Am. B  
  Volume 36 Issue 3 Pages B20  
  Keywords NbN PNR SSPD, SNSPD  
  Abstract The use of improved fabrication technology, highly disordered NbN thin films, and intertwined section topology makes it possible to create high-performance photon-number-resolving superconducting single-photon detectors (PNR SSPDs) that are comparable to conventional single-element SSPDs at the telecom range. The developed four-section PNR SSPD has simultaneously an 86±3% system detection efficiency, 35 cps dark count rate, ∼2 ns dead time, and maximum 90 ps jitter. An investigation of the PNR SSPD’s detection efficiency for multiphoton events shows good uniformity across sections. As a result, such a PNR SSPD is a good candidate for retrieving the photon statistics for light sources and quantum key distribution systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0740-3224 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1225  
Permanent link to this record
 

 
Author Pentin, I.; Vakhtomin, Y.; Seleznev, V.; Smirnov, K. url  doi
openurl 
  Title (up) Hot electron energy relaxation time in vanadium nitride superconducting film structures under THz and IR radiation Type Journal Article
  Year 2020 Publication Sci. Rep. Abbreviated Journal Sci. Rep.  
  Volume 10 Issue 1 Pages 16819  
  Keywords VN HEB  
  Abstract The paper presents the experimental results of studying the dynamics of electron energy relaxation in structures made of thin (d approximately 6 nm) disordered superconducting vanadium nitride (VN) films converted to a resistive state by high-frequency radiation and transport current. Under conditions of quasi-equilibrium superconductivity and temperature range close to critical (~ Tc), a direct measurement of the energy relaxation time of electrons by the beats method arising from two monochromatic sources with close frequencies radiation in sub-THz region (omega approximately 0.140 THz) and sources in the IR region (omega approximately 193 THz) was conducted. The measured time of energy relaxation of electrons in the studied VN structures upon heating of THz and IR radiation completely coincided and amounted to (2.6-2.7) ns. The studied response of VN structures to IR (omega approximately 193 THz) picosecond laser pulses also allowed us to estimate the energy relaxation time in VN structures, which was ~ 2.8 ns and is in good agreement with the result obtained by the mixing method. Also, we present the experimentally measured volt-watt responsivity (S~) within the frequency range omega approximately (0.3-6) THz VN HEB detector. The estimated values of noise equivalent power (NEP) for VN HEB and its minimum energy level (deltaE) reached NEP@1MHz approximately 6.3 x 10(-14) W/ radicalHz and deltaE approximately 8.1 x 10(-18) J, respectively.  
  Address National Research University Higher School of Economics, 20 Myasnitskaya Str., Moscow, 101000, Russia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:33033360; PMCID:PMC7546726 Approved no  
  Call Number Serial 1797  
Permanent link to this record
 

 
Author Vasilev, D. D.; Malevannaya, E. I.; Moiseev, K. M.; Zolotov, P. I.; Antipov, A. V.; Vakhtomin, Y. B.; Smirnov, K. V. url  doi
openurl 
  Title (up) Influence of deposited material energy on superconducting properties of the WSi films Type Conference Article
  Year 2020 Publication IOP Conf. Ser.: Mater. Sci. Eng. Abbreviated Journal IOP Conf. Ser.: Mater. Sci. Eng.  
  Volume 781 Issue Pages 012013 (1 to 6)  
  Keywords WSi SSPD, SNSPD  
  Abstract WSi thin films have the advantages for creating SNSPDs with a large active area or array of detectors on a single substrate due to the amorphous structure. The superconducting properties of ultrathin WSi films substantially depends on their structure and thickness as the NbN films. Scientific groups investigating WSi films mainly focused only on changes of their thickness and the ratio of the components on the substrate at room temperature. This paper presents experiments to determine the effect of the bias potential on the substrate, the temperature of the substrate, and the peak power of pulsed magnetron sputtering, which is the equivalent of ionization, a tungsten target, on the surface resistance and superconducting properties of the WSi ultrathin films. The negative effect of the substrate temperature and the positive effect of the bias potential and the ionization coefficient (peak current) allow one to choose the best WSi films formation mode for SNSPD: substrate temperature 297 K, bias potential -60 V, and peak current 3.5 A.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1757-899X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1798  
Permanent link to this record
 

 
Author Zolotov, P. I.; Divochiy, A. V.; Vakhtomin, Y. B.; Lubenchenko, A. V.; Morozov, P. V.; Shurkaeva, I. V.; Smirnov, K. V. url  doi
openurl 
  Title (up) Influence of sputtering parameters on the main characteristics of ultra-thin vanadium nitride films Type Conference Article
  Year 2018 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1124 Issue Pages 051030  
  Keywords SSPD, SNSPD, VN  
  Abstract We researched the relation between deposition and ultra-thin VN films parameters. To conduct the experimental study we varied substrate temperature, Ar and N2 partial pressures and deposition rate. The study allowed us to obtain the films with close to the bulk values transition temperatures and implement such samples in order to fabricate superconducting single-photon detectors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1228  
Permanent link to this record
 

 
Author Antipov, A. V.; Seleznev, V. A.; Vakhtomin, Y. B.; Morozov, P. V.; Vasilev, D. D.; Malevannaya, E. I.; Moiseev, K. M.; Smirnov, K. url  doi
openurl 
  Title (up) Investigation of WSi and NbN superconducting single-photon detectors in mid-IR range Type Conference Article
  Year 2020 Publication IOP Conf. Ser.: Mater. Sci. Eng. Abbreviated Journal IOP Conf. Ser.: Mater. Sci. Eng.  
  Volume 781 Issue Pages 012011 (1 to 5)  
  Keywords WSi, NbN SSPD, SNSPD  
  Abstract Spectral characteristics of WSi and NbN superconducting single-photon detectors with different surface resistance and width of nanowire strips have been investigated in the wavelength range of 1.3-2.5 μm. WSi structures with narrower strips demonstrated better performance for detection of single photons in longer wavelength range. The difference in normalized photon count rate for such structures reaches one order of magnitude higher in comparison with structures based on NbN thin films at 2.5 μm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1757-899X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1799  
Permanent link to this record
 

 
Author Moshkova, M.; Morozov, P.; Divochiy, A.; Vakhtomin, Y.; Smirnov, K. url  doi
openurl 
  Title (up) Large active area superconducting single photon detector Type Conference Article
  Year 2019 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume 1410 Issue Pages 012139  
  Keywords SSPD, SNSPD  
  Abstract We present development of large active area superconducting single-photon detectors well coupled with standard 50 μm-core multi-mode fiber. The sensitive area of the SSPD is patterned using the photon-number-resolving design and occupies an area of 40×40 μm2. Using this approach, we have obtained excellent specifications: system detection efficiency of 47% measured using a 900 nm laser and low dark count rate of 100 cps. The main advantages of the approach presented are a very short dead time of the detector of 22 ns and FWHM jitter value of about 130 ps.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1224  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: