toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Shurakov, A.; Tong, Cheuk-yu E.; Grimes, P.; Blundell, R.; Golt'sman, G. openurl 
  Title (up) A microwave reflection readout scheme for hot electron bolometric direct detector Type Journal Article
  Year 2015 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.  
  Volume 5 Issue Pages 81-84  
  Keywords HEB detectors  
  Abstract In this paper, we propose and present data from a fast THz detector based on the repurpose of hot electron bolometer mixers (HEB) fabricated from superconducting NbN thinfilm. This detector is essentially a traditional NbN bolometer element that operates under the influence of a microwave pump. The in-jected microwave power serves the dual purpose of enhancing the detector sensitivity and reading out the impedance changes of the device in response to incidentTHz radiation. We have measured an optical Noise Equivalent Power of 4 pW/ Hz for our detector at a bath temperature of 4.2 K. The measurement frequency was 0.83 THz and the modulation frequency was 1.48 kHz. The readout

scheme is versatile and facilitates both high-speed operation as well as multi-pixel applications.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ atomics90 @ Serial 950  
Permanent link to this record
 

 
Author Tong, C.-Y. E.; Trifonov, A.; Shurakov, A.; Blundell, R.; Gol’tsman, G. url  doi
openurl 
  Title (up) A microwave-operated hot-electron-bolometric power detector for terahertz radiation Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 2300604 (1 to 4)  
  Keywords NbN HEB mixer  
  Abstract A new class of microwave-operated THz power detectors based on the NbN hot-electron-bolometer (HEB) mixer is proposed. The injected microwave signal ( 1 GHz) serves the dual purpose of pumping the HEB element and enabling the read-out of the internal state of the device. A cryogenic amplifier amplifies the reflected microwave signal from the device and a homodyne scheme recovers the effects of the incident THz radiation. Two modes of operation have been identified, depending on the level of incident radiation. For weak signals, we use a chopper to chop the incident radiation against a black body reference and a lock-in amplifier to perform synchronous detection of the homodyne readout. The voltage measured is proportional to the incident power, and we estimate an optical noise equivalent power of  5pW/ √Hz at 0.83 THz. At higher signal levels, the homodyne circuit recovers the stream of steady relaxation oscillation pulses from the HEB device. The frequency of these pulses is in the MHz frequency range and bears a linear relationship with the incident THz radiation over an input power range of  15 dB. A digital frequency counter is used to measure THz power. The applicable power range is between 1 nW and 1 μW.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1354  
Permanent link to this record
 

 
Author Morozov, D. V.; Smirnov, K. V.; Smirnov, A. V.; Lyakhov, V. A.; Goltsman, G. N. url  doi
openurl 
  Title (up) A millimeter-submillimeter phonon-cooled hot-electron bolometer mixer based on two-dimensional electron gas in an AlGaAs/GaAs heterostructure Type Journal Article
  Year 2005 Publication Semicond. Abbreviated Journal Semicond.  
  Volume 39 Issue 9 Pages 1082-1086  
  Keywords 2D electron gas, AlGaAs/GaAs heterostructures, mixers  
  Abstract Experimental results obtained by studying the main characteristics of a millimeter-submillimeter wave mixer based on the hot-electron effect in a two-dimensional electron gas in a AlGaAs/GaAs heterostructure with a phonon-scattering cooling mechanism for charge carriers are reported. The gain bandwidth of the mixer is 4 GHz, the internal conversion losses are 13 dB, and the optimum local-oscillator power is 0.5 μW (for a mixer area of 1 μm2). It is shown that a millimeter-submillimeter-wave receiver with a noise temperature of 1900 K can be developed on the basis of a AlGaAs/GaAs mixer. This mixer also appears to be promising for use in array receiver elements.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1063-7826 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1463  
Permanent link to this record
 

 
Author Rönnung, F.; Cherednichenko, S.; Winkler, D.; Gol'tsman, G. N. url  doi
openurl 
  Title (up) A nanoscale YBCO mixer optically coupled with a bow tie antenna Type Journal Article
  Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.  
  Volume 12 Issue 11 Pages 853-855  
  Keywords YBCO HTS HEB mixers  
  Abstract The bolometric response of YBa2Cu3O7-δ(YBCO) hot-electron bolometers (HEBs) to near-infrared radiation was studied. Devices were fabricated from a 50 nm thick film and had in-plane areas of 10 × 10 µm2, 2 × 0.2 µm2, 1 × 0.2µm2 and 0.5 × 0.2 µm2. We found that nonequilibrium phonons cool down more effectively for the bolometers with smaller area. For the smallest bolometer the bolometric component in the response is 10 dB less than for the largest one.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0953-2048 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1563  
Permanent link to this record
 

 
Author Marksteiner, M.; Divochiy, A.; Sclafani, M.; Haslinger, P.; Ulbricht, H.; Korneev, A.; Semenov, A.; Gol'tsman, G.; Arndt, M. url  doi
openurl 
  Title (up) A superconducting NbN detector for neutral nanoparticles Type Journal Article
  Year 2009 Publication Nanotechnol. Abbreviated Journal Nanotechnol.  
  Volume 20 Issue 45 Pages 455501  
  Keywords SSPD; SNSPD; *Electric Conductivity; Microscopy, Electron, Scanning; Nanoparticles/*chemistry/ultrastructure; Nanotechnology/*methods; *Photons  
  Abstract We present a proof-of-principle study of superconducting single photon detectors (SSPD) for the detection of individual neutral molecules/nanoparticles at low energies. The new detector is applied to characterize a laser desorption source for biomolecules and allows retrieval of the arrival time distribution of a pulsed molecular beam containing the amino acid tryptophan, the polypeptide gramicidin as well as insulin, myoglobin and hemoglobin. We discuss the experimental evidence that the detector is actually sensitive to isolated neutral particles.  
  Address University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria. markus.arndt@univie.ac.at  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0957-4484 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19822928 Approved no  
  Call Number Serial 1239  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: