toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Novotny, Lukas openurl 
  Title (up) Effective wavelength scaling for optical antennas Type Journal Article
  Year 2007 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.  
  Volume 98 Issue 26 Pages 266802(1-4)  
  Keywords optical antennas  
  Abstract In antenna theory, antenna parameters are directly related to the wavelength λ of incident radiation, but this scaling fails at optical frequencies where metals behave as strongly coupled plasmas. In this Letter we show that antenna designs can be transferred to the optical frequency regime by replacing λ by a linearly scaled effective wavelength λeff=n1+n2λ/λp, with λp being the plasma wavelength and n1, n2 being coefficients that depend on geometry and material properties. It is assumed that the antenna is made of linear segments with radii Râ‰<aa>λ. Optical antennas hold great promise for increasing the efficiency of photovoltaics, light-emitting devices, and optical sensors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ gujma @ Serial 749  
Permanent link to this record
 

 
Author Coumou, P. C. J. J.; Driessen, E. F. C.; Bueno, J.; Chapelier, C.; Klapwijk, T. M. url  doi
openurl 
  Title (up) Electrodynamic response and local tunneling spectroscopy of strongly disordered superconducting TiN films Type Journal Article
  Year 2013 Publication Phys. Rev. B Abbreviated Journal  
  Volume 88 Issue 18 Pages 180505 (1 to 5)  
  Keywords strongly disordered superconducting TiN films, microwave resonators  
  Abstract We have studied the electrodynamic response of strongly disordered superconducting TiN films using microwave resonators, where the disordered superconductor is the resonating element in a high-quality superconducting environment of NbTiN. We describe the response assuming an effective pair-breaking mechanism modifying the density of states and compare this to local tunneling spectra obtained using scanning tunneling spectroscopy. For the least disordered film (kFl=8.7, Rs=13Ω), we find good agreement, whereas for the most disordered film (kFl=0.82, Rs=4.3kΩ), there is a strong discrepancy, which signals the breakdown of a model based on uniform properties.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1069  
Permanent link to this record
 

 
Author Shytov, A. V.; Levitov, L. S.; Beenakker, C. W. J. url  doi
openurl 
  Title (up) Electromechanical noise in a diffusive conductor Type Journal Article
  Year 2002 Publication Phys. Rev. Lett. Abbreviated Journal Phys. Rev. Lett.  
  Volume 88 Issue 22 Pages  
  Keywords  
  Abstract Electrons moving in a conductor can transfer momentum to the lattice via collisions with impurities and boundaries, giving rise to a fluctuating mechanical stress tensor. The root-mean-squared momentum transfer per scattering event in a disordered metal (of dimension L greater than the mean free path l and screening length xi) is found to be reduced below the Fermi momentum by a factor of order l/L for shear fluctuations and (xi/L)^2 for pressure fluctuations. The excitation of an elastic bending mode by the shear fluctuations is estimated to fall within current experimental sensitivity for a nanomechanical oscillator.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-9007 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ Serial 433  
Permanent link to this record
 

 
Author Sidorova, M.; Semenov, Alexej D.; Hübers, H.-W.; Ilin, K.; Siegel, M.; Charaev, I.; Moshkova, M.; Kaurova, N.; Goltsman, G. N.; Zhang, X.; Schilling, A. url  doi
openurl 
  Title (up) Electron energy relaxation in disordered superconducting NbN films Type Journal Article
  Year 2020 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 102 Issue 5 Pages 054501 (1 to 15)  
  Keywords NbN SSPD, SNSPD, HEB, bandwidth, relaxation time  
  Abstract We report on the inelastic-scattering rate of electrons on phonons and relaxation of electron energy studied by means of magnetoconductance, and photoresponse, respectively, in a series of strongly disordered superconducting NbN films. The studied films with thicknesses in the range from 3 to 33 nm are characterized by different Ioffe-Regel parameters but an almost constant product qTl (qT is the wave vector of thermal phonons and l is the elastic mean free path of electrons). In the temperature range 14–30 K, the electron-phonon scattering rates obey temperature dependencies close to the power law 1/τe−ph∼Tn with the exponents n≈3.2–3.8. We found that in this temperature range τe−ph and n of studied films vary weakly with the thickness and square resistance. At 10 K electron-phonon scattering times are in the range 11.9–17.5 ps. The data extracted from magnetoconductance measurements were used to describe the experimental photoresponse with the two-temperature model. For thick films, the photoresponse is reasonably well described without fitting parameters, however, for thinner films, the fit requires a smaller heat capacity of phonons. We attribute this finding to the reduced density of phonon states in thin films at low temperatures. We also show that the estimated Debye temperature in the studied NbN films is noticeably smaller than in bulk material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1266  
Permanent link to this record
 

 
Author Huard, B.; Pothier, H.; Esteve, D.; Nagaev, K. E. url  doi
openurl 
  Title (up) Electron heating in metallic resistors at sub-Kelvin temperature Type Journal Article
  Year 2007 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 76 Issue Pages 165426(1-9)  
  Keywords electron heating in resistor, HEB distributed model, HEB model, hot electrons  
  Abstract In the presence of Joule heating, the electronic temperature in a metallic resistor placed at sub-Kelvin temperatures can significantly exceed the phonon temperature. Electron cooling proceeds mainly through two processes: electronic diffusion to and from the connecting wires and electron-phonon coupling. The goal of this paper is to present a general solution of the problem in a form that can easily be used in practical situations. As an application, we compute two quantities that depend on the electronic temperature profile: the second and the third cumulant of the current noise at zero frequency, as a function of the voltage across the resistor. We also consider time-dependent heating, an issue relevant for experiments in which current pulses are used, for instance, in time-resolved calorimetry experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk as example for writing the article on the HEB model. Approved no  
  Call Number Serial 936  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: