|   | 
Details
   web
Records
Author Hübers, H.-W.; Schubert, J.; Krabbe, A.; Birk, M.; Wagner, G.; Semenov, A.; Gol’tsman, G.; Voronov, B.; Gershenzon, E.
Title (up) Parylene anti-reflection coating of a quasi-optical hot-electron-bolometric mixer at terahertz frequencies Type Journal Article
Year 2001 Publication Infrared Physics & Technology Abbreviated Journal Infrared Physics & Technology
Volume 42 Issue 1 Pages 41-47
Keywords NbN HEB mixers, anti-reflection coating
Abstract Parylene C was investigated as anti-reflection coating for silicon at terahertz frequencies. Measurements with a Fourier-transform spectrometer show that the transmittance of pure silicon can be improved by about 30% when applying a layer of Parylene C with a quarter wavelength optical thickness. The 10% bandwidth of this coating extends from 1.5 to 3 THz for a center frequency of 2.3–2.5 THz, where the transmittance is constant. Heterodyne measurements demonstrate that the noise temperature of a hot-electron-bolometric mixer can be reduced significantly by coating the silicon lens of the hybrid antenna with a quarter wavelength Parylene C layer. Compared to the same mixer with an uncoated lens the improvement is about 30% at a frequency of 2.5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1350-4495 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1548
Permanent link to this record
 

 
Author Shurakov, Alexander; Maslennikov, Sergey; Tong, Cheuk-yu E.; Gol’tsman, Gregory
Title (up) Performance of an HEB direct detector utilizing a microwave reflection readout scheme Type Conference Article
Year 2015 Publication Proc. 26th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 26th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 36
Keywords HEB detector
Abstract We report the results of our study on the performance of a hot electron bolometric (HEB) direct detector, operated by a microwave pump. The HEB devices used in this work were made from NbN thin film deposited on high resistivity silicon with an in-situ fabrication process. The experimental setup employed is similar to the one described in [1]. The detector chips were glued to a silicon lens clamped to a copper holder mounted on the cold plate of a liquid helium cryostat. Thermal link between the lens and the holder was maintained by a thin indium shim. The HEBs were operated at a bath temperature of about 4.4 K. Conventional phonon pump, commonly realized by raising the bath temperature of the detector, was substituted by a microwave one. In this case, a CW microwave signal is injected to the device through a directional coupler connected directly to the detector holder. The power incident on the HEB device was typically 1-2 μW, and the pump frequency was in the range of 0.5-1.5 GHz. The signal sources were 2 black bodies held at temperatures of 295 K and 77 K. A chopper wheel placed in front of the cryostat window switched the input to the detector between the 2 sources. A modulation frequency of several kilohertz was chosen in order to reduce the effects of the HEB’s flicker noise. A cold mesh filter was used to define the input bandwidth of the detector. The reflected microwave signal from the HEB device was fed into a low noise amplifier, the output of which is connected to a room temperature Schottky microwave power detector. This Schottky detector, in conjunction with a lock-in amplifier, demodulated the input signal modulation from the copper wheel. As the input load was switched, the impedance of the HEB device at the microwave pump frequency also changed in response to the incident signal power variation. Therefore the reflected microwave power follows the incident signal modulation. The derived responsivity from this detection system nicely correlates with the HEB impedance. In order to provide a quantitative description of the impedance variation of the HEB device and the impact of a microwave pump, we have numerically solved the heat balance equations written for the NbN bridge and its surrounding thermal heat sink [2]. Our model also accounts for the impact of the operating frequency of the detector because of non-uniform absorption of low-frequency photons across the NbN bridge [3]. In our measurements we varied the signal source wavelength from 2 mm down to near infrared range, and hence we indirectly performed the impedance measurements at frequencies below, around and far beyond the superconducting gap. Preliminary results show good agreement between the experiment and theoretical prediction. Further measurements are still in progress. [1] A. Shurakov et al., “A Microwave Reflection Readout Scheme for Hot Electron Bolometric Direct Detector”, to appear in IEEE Trans. THz Sci. Tech., 2015. [2] S. Maslennikov, “RF heating efficiency of the terahertz superconducting hot-electron bolometer”, http://arxiv.org/pdf/1404.5276v5.pdf, 2014. [3] W. Miao et al., “Non-uniform absorption of terahertz radiation on superconducting hot electron bolometer microbridges”, Appl. Phys. Let., 104, 052605, 2014.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1158
Permanent link to this record
 

 
Author Yagoubov, P.; Kroug, M.; Merkel, H.; Kollberg, E.; Schubert, J.; Hubers, H.-W.; Schwaab, G.; Gol’tsman, G.; Gershenzon, E.
Title (up) Performance of NbN phonon-cooled hot-electron bolometric mixer at Terahertz frequencies Type Conference Article
Year 1998 Publication Proc. 6-th Int. Conf. Terahertz Electron. Abbreviated Journal Proc. 6-th Int. Conf. Terahertz Electron.
Volume Issue Pages 149-152
Keywords NbN HEB mixers
Abstract The performance of a NbN based phonon-cooled Hot Electron Bolometric (HEB) quasioptical mixer is investigated in the 0.65-3.12 THz frequency range. The device is made from a 3 nm thick NbN film on high resistivity Si and integrated with a planar spiral antenna on the same substrate. The in-plane dimensions of the bolometer strip are 0.2/spl times/2 /spl mu/m. The results of the DSB noire temperature are: 1300 K at 650 GHz, 4700 K at 2.5 TBz and 10000 K at 3.12 THz. The RF bandwidth of the receiver is at least 2.5 THz. The amount of LO power absorbed in the bolometer is about 100 nW. The mixer is linear to within 1 dB compression up to the signal level 10 dB below that of the LO. The intrinsic single sideband conversion gain is measured to be -9 dB, the total conversion gain -14 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference IEEE Sixth International Conference on Terahertz Electronics Proceedings. THZ 98. (Cat. No.98EX171)
Notes Approved no
Call Number Serial 1582
Permanent link to this record
 

 
Author Semenov, Alexei; Hübers, Heinz.-Wilhelm; Richter, Heiko; Birk, Manfred; Krocka, Michael; Mair, Ulrich; Smirnov, Konstantin; Gol'tsman, Grigory; Voronov, Boris
Title (up) Performance of terahertz heterodyne receiver with a superconducting hot-electron mixer Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 229-234
Keywords
Abstract During the past decade major advances have been made regarding low noise mixers for terahertz heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a microwatt power from the local oscillator (L0). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, is of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated its performance. This yields important information for future development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA) [1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1529
Permanent link to this record
 

 
Author de Lange, Gert; Krieg, Jean-Michel; Honingh, Netty; Karpov, Alexandre; Cherednichenko, Sergey
Title (up) Performance of the HIFI flight mixers Type Conference Article
Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal
Volume Issue Pages 98-105
Keywords HEB mixer applications, HEB applications
Abstract We summarize the technology and final results of the superconducting heterodyne SIS and HEB mixers that are developed for the HIFI instrument. Within HIFI 7 frequency bands cover the frequency range from 480 GHz to 1910 GHz. We describe the different device technologies and optical coupling schemes that are used to cover the frequency bands. The efforts of the different mixer teams that participate in HIFI have contributed to an instrument that will have unprecedented sensitivity and frequency coverage.
Address Groningen
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1074
Permanent link to this record
 

 
Author Hübers, Heinz-Wilhelm; Semenov, Alexei; Schubert, Josef; Gol'tsman, Gregory; Voronov, Boris; Gershenzon, Evgeni
Title (up) Performance of the phonon-cooled hot-electron bolometric mixer between 0.7 THz and 5.2 THz Type Conference Article
Year 2000 Publication Proc. 8-th Int. Conf. on Terahertz Electronics Abbreviated Journal Proc. 8-th Int. Conf. on Terahertz Electronics
Volume Issue Pages 117-119
Keywords NbN HEB mixers
Abstract We report on the phonon cooled NbN hot electron bolometer as mixer in the terahertz frequency range. Its hybrid antenna consists of a hyperhemispheric silicon lens and a logarithmic-spiral feed antenna. Noise temperatures have been measured between 0.7 THz and 5.2 THz. A quarter wavelength layer of Parylene works as antireflection coating for the silicon lens and reduces the noise temperature by about 30. It was found that the antenna pattern at 2.5 THz is determined by the feed antenna and not by the diameter of the lens.
Address Darmstadt, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Conference on Terahertz Electronics [8th], Held inDarmstadt, Germany on 28-29 September 2000
Notes Approved no
Call Number Serial 1553
Permanent link to this record
 

 
Author Hübers, Heinz-Wilhelm; Semenov, A.; Richter, H.; Smirnov, K.; Gol'tsman, G.; Voronov, B.
Title (up) Phonon cooled far-infrared hot electron bolometer mixer Type Abstract
Year 2002 Publication NASA/ADS Abbreviated Journal NASA/ADS
Volume Issue Pages
Keywords NbN HEB mixers
Abstract Heterodyne receivers for applications in astronomy need quantum-limited sensitivity. At frequencies above 1.4 THz superconducting hot electron bolometers (HEB) can be used to achieve this goal. We present results of the development of a quasi-optical phonon-cooled NbN HEB mixer for GREAT, the German heterodyne receiver for SOFIA. Different mixers with logarithmic spiral and double slot feed antennas have been investigated with respect to their noise temperature, conversion loss, linearity and beam pattern at several frequencies between 0.7 THz and 5.2 THz. At 2.5 THz a double sideband noise temperature of 2200 K was achieved. The conversion loss was 16 dB. The response of the mixer was linear up to 400 K load temperature. This performance was verified by measuring an emission line of methanol at 2.5 THz. The results demonstrate that the NbN HEB is very well suited as a mixer for FIR heterodyne receivers.
Address Monterey, CA
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Far-IR, Sub-mm & MM Detector Technology Workshop, 1-3 April 2002
Notes id.37 Approved no
Call Number Serial 1534
Permanent link to this record
 

 
Author Richter, H.; Semenov, A.; Hubers, H.-W.; Smirnov, K.; Gol’tsman, G.; Voronov, B.
Title (up) Phonon cooled hot-electron bolometric mixer for 1-5 THz Type Conference Article
Year 2004 Publication Proc. 29th IRMMW / 12th THz Abbreviated Journal Proc. 29th IRMMW / 12th THz
Volume Issue Pages 241-242
Keywords NbN HEB mixers
Abstract Heterodyne receivers for applications in astronomy and planetary research need quantum limited sensitivity. In instruments which are currently built for SOFIA and Herschel, superconducting hot electron bolometers (HEB) are used to achieve this goal at frequencies above 1.4 THz. In order to optimize the performance for this frequency of hot electron bolometer mixers with different in-plane dimensions and logarithmic-spiral feed antennas have been investigated. Their noise temperatures and beam patterns were measured. Above 3 THz the best performance was achieved with a superconducting bridge of 2.0/spl times/0.2 /spl mu/m/sup 2/ incorporated in a logarithmic spiral antenna. The DSB noise temperatures were 2700 K, 4700 and 6400 K at 3.1 THz, 4.3 THz and 5.2 THz, respectively. The results demonstrate that the NbN HEB is very well suited as a mixer for THz heterodyne receivers up to at least 5 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1506
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C-Y. E.; Gol'tsman, G.; Gershenzon, E.; Voronov, B.; Cherednichenko, S.
Title (up) Phonon-cooled NbN HEB mixers for submillimeter wavelengths Type Conference Article
Year 1997 Publication Proc. 8th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 8th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 23-28
Keywords waveguide NbN HEB mixers
Abstract The noise performance of receivers incorporating NbN phonon-cooled superconducting hot electron bolometric mixers is measured from 200 GHz to 900 GHz. The mixer elements are thin-film (thickness — 4 nm) NbN with —5 to 40 pm area fabricated on crystalline quartz sub- strates. The receiver noise temperature from 200 GHz to 900 GHz demonstrates no unexpected degradation with increasing frequency, being roughly TRx ,; 1-2 K The best receiver noise temperatures are 410 K (DSB) at 430 GHz, 483 K at 636 GHz, and 1150 K at 800 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 275
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Lobanov, Y.; Kaurova, N.; Blundell, R.; Goltsman, G.
Title (up) Photon absorption near the gap frequency in a hot electron bolometer Type Journal Article
Year 2017 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 27 Issue 4 Pages 1-4
Keywords NBN HEB mixer
Abstract The superconducting energy gap is a fundamental characteristic of a superconducting film, which, together with the applied pump power and the biasing setup, defines the instantaneous resistive state of the Hot Electron Bolometer (HEB) mixer at any given bias point on the I-V curve. In this paper we report on a series of experiments, in which we subjected the HEB to radiation over a wide frequency range along with parallel microwave injection. We have observed three distinct regimes of operation of the HEB, depending on whether the radiation is above the gap frequency, far below it or close to it. These regimes are driven by the different patterns of photon absorption. The experiments have allowed us to derive the approximate gap frequency of the device under test as about 585 GHz. Microwave injection was used to probe the HEB impedance. Spontaneous switching between the superconducting (low resistive) state and a quasi-normal (high resistive) state was observed. The switching pattern depends on the particular regime of HEB operation and can assume a random pattern at pump frequencies below the gap to a regular relaxation oscillation running at a few MHz when pumped above the gap.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1331
Permanent link to this record