|   | 
Details
   web
Records
Author Gerecht, E.; Musante, C. F.; Jian, H.; Yngvesson, K. S.; Dickinson, J.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Voronov, B. M.; Gershenzon, E. M.
Title (down) Measured results for NbN phonon-cooled hot electron bolometric mixers at 0.6-0.75 THz, 1.56 THz, and 2.5 THz Type Conference Article
Year 1998 Publication Proc. 9th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 9th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 105-114
Keywords NbN HEB mixers
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1587
Permanent link to this record
 

 
Author Ryabchun, S. A.; Tretyakov, I. V.; Pentin, I. V.; Kaurova, N. S.; Seleznev, V. A.; Voronov, B. M.; Finkel, M. I.; Maslennikov, S. N.; Gol'tsman, G. N.
Title (down) Low-noise wide-band hot-electron bolometer mixer based on an NbN film Type Journal Article
Year 2009 Publication Radiophys. Quant. Electron. Abbreviated Journal
Volume 52 Issue 8 Pages 576-582
Keywords HEB mixer, in-situ contacts, noise temperature, conversion gain bandwidth, diffusion cooling channel
Abstract We develop and study a hot-electron bolometer mixer made of a two-layer NbN–Au film in situ deposited on a silicon substrate. The double-sideband noise temperature of the mixer is 750 K at a frequency of 2.5 THz. The conversion efficiency measurements show that at the superconducting transition temperature, the intermediate-frequency bandwidth amounts to about 6.5 GHz for a mixer 0.112 μm long. These record-breaking characteristics are attributed to the improved contacts between a sensitive element and a helical antenna and are reached due to using the in situ deposition of NbN and Au layers at certain stages of the process.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 599
Permanent link to this record
 

 
Author Yngvesson, K. S.; Gerecht, E.; Musante, C. F.; Zhuang, Y.; Ji, M.; Goyette, T. M.; Dickinson, J. C.; Waldman, J.; Yagoubov, P. A.; Gol’tsman, G. N.; Voronov, B. M.; Gershenzon, E. M.
Title (down) Low-noise HEB heterodyne receivers and focal plane arrays for the THz regime using NbN Type Conference Article
Year 1999 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 3795 Issue Pages 357-368
Keywords NbN HEB mixers
Abstract We have developed prototype HEB receivers using thin film superconducting NbN devices deposited on silicon substrates. The devices are quasi-optically coupled through a silicon lens and a self-complementary log-specific toothed antenna. We measured DSB receiver noise temperatures of 500 K (13 X hf/2k) at 1.56 THz and 1,100 K (20 X hf/2k) at 2.24 THz. Noise temperatures are expected to fall further as devices and quasi-optical coupling methods are being optimized. The measured 3 dB IF conversion gain bandwidth for one device was 3 GHz, and it is estimated that the bandwidth over which the receiver noise temperature is within 3 dB of its minimum value is 6.5 GHz which is sufficient for a number of practical applications. We will discuss our latest results and give a detailed description of our prototype setup and experiments. We will also discuss our plans for developing focal plane arrays with tens of Hot Electron Bolometric mixer elements on a single silicon substrate which will make real time imaging systems in the THz region feasible.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Hwu, R.J.; Wu, K.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Terahertz and Gigahertz Photonics
Notes Approved no
Call Number Serial 1561
Permanent link to this record
 

 
Author Hajenius, M.; Baselmans, J. J. A.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G.
Title (down) Low noise NbN superconducting hot electron bolometer mixers at 1.9 and 2.5 THz Type Journal Article
Year 2004 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 17 Issue 5 Pages S224-S228
Keywords NbN HEB mixers
Abstract NbN phonon-cooled hot electron bolometer mixers (HEBs) have been realized with negligible contact resistance between the bolometer itself and the contact structure. Using a combination of in situ cleaning of the NbN film and the use of an additional superconducting interlayer of a 10 nm NbTiN layer between the Au of the contact structure and the NbN film superior noise temperatures have been obtained as low as 950 K at 2.5 THz and 750 K at 1.9 THz. Here we address in detail the DC characterization of these devices, the interface transparencies between the bolometers and the contacts and the consequences of these factors on the mixer performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0953-2048 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 558
Permanent link to this record
 

 
Author Kawamura, J.; Blundell, R.; Tong, C.-yu E.; Gol’tsman, G.; Gershenzon, E.; Voronov, B.; Cherednichenko, S.
Title (down) Low noise NbN lattice-cooled superconducting hot-electron bolometric mixers at submillimeter wavelengths Type Journal Article
Year 1997 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 70 Issue 12 Pages 1619-1621
Keywords NbN HEB mixers
Abstract Lattice-cooled superconducting hot-electron bolometric mixers are used in a submillimeter-wave waveguide heterodyne receiver. The mixer elements are niobium nitride film with 3.5 nm thickness and ∼10 μm2 area. The local oscillator power for optimal performance is estimated to be 0.5 μW, and the instantaneous bandwidth is 2.2 GHz. At an intermediate frequency centered at 1.4 GHz with 200 MHz bandwidth, the double sideband receiver noise temperature is 410 K at 430 GHz. The receiver has been used to detect molecular line emission in a laboratory gas cell.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1599
Permanent link to this record
 

 
Author Hajenius, M.; Barends, R.; Gao, J. R.; Klapwijk, T. M.; Baselmans, J. J. A.; Baryshev, A.; Voronov, B.; Gol'tsman, G.
Title (down) Local resistivity and the current-voltage characteristics of hot electron bolometer mixers Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 495-498
Keywords HEB mixer distributed model, HEB distributed model, distributed HEB model
Abstract Hot-electron bolometer devices, used successfully in low noise heterodyne mixing at frequencies up to 2.5 THz, have been analyzed. A distributed temperature numerical model of the NbN bridge, based on a local electron and a phonon temperature, is used to model pumped IV curves and understand the physical conditions during the mixing process. We argue that the mixing is predominantly due to the strongly temperature dependent local resistivity of the NbN. Experimentally we identify the origins of different transition temperatures in a real HEB device, suggesting the importance of the intrinsic resistive transition of the superconducting bridge in the modeling.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 980
Permanent link to this record
 

 
Author Cherednichenko, S.; Kroug, M.; Merkel, H.; Kollberg, E.; Loudkov, D.; Smirnov, K.; Voronov, B.; Gol'tsman, G.; Gershenzon, E.
Title (down) Local oscillator power requirement and saturation effects in NbN HEB mixers Type Conference Article
Year 2001 Publication Proc. 12th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 12th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 273-285
Keywords NbN HEB mixers, LO power, local oscillator power, saturation effect, dynamic range
Abstract The local oscillator power required for NbN hot-electron bolometric mixers (P LO ) was investigated with respect to mixer size, critical temperature and ambient temperature. P LO can be decreased by a factor of 10 as the mixer size decreases from 4×0.4 µm 2 to 0.6×0.13 µm 2 . For the smallest volume mixer the optimal local oscillator power was found to be 15 nW. We found that for such mixer no signal compression was observed up to an input signal of 2 nW which corresponds to an equivalent input load of 20,000 K. For a constant mixer volume, reduction of T c can decrease optimal local oscillator power at least by a factor of 2 without a deterioration of the receiver noise temperature. Bath temperature was found to have minor effect on the receiver characteristics.
Address
Corporate Author Thesis
Publisher Place of Publication San Diego, CA, USA Editor Jet Propulsion Laboratory, California Inst.it.u.t.e of Technology
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 318
Permanent link to this record
 

 
Author Lobanov, Y.; Tong, E.; Blundell, R.; Hedden, A.; Voronov, B.; Gol'tsman, G.
Title (down) Large-signal frequency response of an HEB mixer: from 300 MHz to terahertz Type Journal Article
Year 2011 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal
Volume 21 Issue 3 Pages 628-631
Keywords waveguide NbN HEB mixers
Abstract We present a study of the large signal frequency response of an HEB mixer over a wide frequency range. In our experiments, we have subjected the HEB mixer to incident electromagnetic radiation from 0.3 GHz to 1 THz. The mixer element is an NbN film deposited on crystalline quartz. The mixer chip is mounted in a waveguide cavity, coupled to free space with a diagonal horn. At microwave frequencies, electromagnetic radiation is applied through the coaxial bias port of the mixer block. At higher frequencies the input signal passes via the diagonal horn feed. At each frequency, the incident power is varied and a family of I-V curves is recorded. From the curves we identify 3 distinct regimes of operation of the mixer separated by the phonon relaxation frequency and the superconducting energy gap frequency observed at about 3 GHz and 660 GHz respectively. In this paper, we will present observed curves and discuss the results of our experiment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 719
Permanent link to this record
 

 
Author Kerman, A. J.; Dauler, E. A.; Keicher, W. E.; Yang, J. K. W.; Berggren, K. K.; Gol’tsman, G.; Voronov, B.
Title (down) Kinetic-inductance-limited reset time of superconducting nanowire photon counters Type Journal Article
Year 2006 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 88 Issue 11 Pages 111116 (1 to 3)
Keywords NbN SSPD, SNSPD
Abstract We investigate the recovery of superconducting NbN-nanowire photon counters after detection of an optical pulse at a wavelength of 1550nm, and present a model that quantitatively accounts for our observations. The reset time is found to be limited by the large kinetic inductance of these nanowires, which forces a tradeoff between counting rate and either detection efficiency or active area. Devices of usable size and high detection efficiency are found to have reset times orders of magnitude longer than their intrinsic photoresponse time.

The authors acknowledge D. Oates and W. Oliver (MIT Lincoln Laboratory), S.W. Nam, A. Miller, and R. Hadfield (NIST) and R. Sobolewski, A. Pearlman, and A. Verevkin (University of Rochester) for helpful discussions and technical assistance. This work made use of MIT’s shared scanning-electron-beam-lithography facility in the Research Laboratory of Electronics. This work is sponsored by the United States Air Force under Air Force Contract No. FA8721-05-C-0002. Opinions, interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1453
Permanent link to this record
 

 
Author Korneev, A. A.; Divochiy, A. V.; Vakhtomin, Yu. B.; Korneeva, Yu. P.; Larionov, P. A.; Manova, N. N.; Florya, I. N.; Trifonov, A. V.; Voronov, B. M.; Smirnov, K. V.; Semenov, A. V.; Chulkova, G. M.; Goltsman, G. N.
Title (down) IR single-photon receiver based on ultrathin NbN superconducting film Type Journal Article
Year 2013 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.
Volume Issue 5 Pages
Keywords SSPD, SNSPD
Abstract We present our recent results in research and development of superconducting single-photon detector (SSPD). We achieved the following performance improvement: first, we developed and characterized SSPD integrated in optical cavity and enabling its illumination from the face side, not through the substrate, second, we improved the quantum efficiency of the SSPD at around 3 μm wavelength by reduction of the strip width to 40 nm, and, finally, we improved the detection efficiency of the SSPD-based single-photon receiver system up to 20% at 1550 nm and extended its wavelength range beyond 1800 nm by the usage of the fluoride ZBLAN fibres.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 8 pages Approved no
Call Number RPLAB @ sasha @ korneevir Serial 1043
Permanent link to this record