toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Maslennikov, S. N.; Finkel, M. I.; Antipov, S. V.; Polyakov, S. L.; Zhang, W.; Ozhegov, R.; Vachtomin, Yu. B.; Svechnikov, S. I.; Smirnov, K. V.; Korotetskaya, Yu. P.; Kaurova, N. S.; Gol'tsman, G. N.; Voronov, B. M. url  openurl
  Title (up) Spiral antenna coupled and directly coupled NbN HEB mixers in the frequency range from 1 to 70 THz Type Conference Article
  Year 2006 Publication Proc. 17th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 17th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 177-179  
  Keywords directly coupled NbN HEB mixers  
  Abstract We investigate both antenna coupled and directly coupled HEB mixers at several LO frequencies within the range of 2.5 THz to 70 THz. H20 (2.5+10.7 THz), and CO2 (30 THz) gas discharge lasers are used as the local oscillators. The noise temperature of antenna coupled mixers is measured at LO frequencies of 2.5 THz, 3.8 THz, and 30 THz. The results for both antenna coupled and directly coupled mixer types are compared. The devices with in—plane dimensions of 5x5 ,um 2 are pumped by LO radiation at 10.7 THz. The directly coupled HEB demonstrates nearly flat dependence of responsivity on frequency in the range of 25+64 THz.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Paris, France Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 386  
Permanent link to this record
 

 
Author Svechnikov, S.; Gol'tsman, G.; Voronov, B.; Yagoubov, P.; Cherednichenko, S.; Gershenzon, E.; Belitsky, V.; Ekstrom, H.; Kollberg, E.; Semenov, A.; Gousev, Y.; Renk, K. url  doi
openurl 
  Title (up) Spiral antenna NbN hot-electron bolometer mixer at submm frequencies Type Journal Article
  Year 1997 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 7 Issue 2 Pages 3395-3398  
  Keywords NbN HEB mixers  
  Abstract We have studied the phonon-cooled hot-electron bolometer (HEB) as a quasioptical mixer based on a spiral antenna designed for the 0.3-1 THz frequency band and fabricated on sapphire and high resistivity silicon substrates. HEB devices were produced from superconducting 3.5-5 nm thick NbN films with a critical temperature 10-12 K and a critical current density of approximately 10/sup 7/ A/cm/sup 2/ at 4.2 K. For these devices we reached a DSB receiver noise temperature below 1500 K, a total conversion loss of L/sub t/=16 dB in the 500-700 GHz frequency range, an IF bandwidth of 3-4 GHz and an optimal LO absorbed power of /spl sime/4 /spl mu/W. We experimentally analyzed various contributions to the conversion loss and obtained an RF coupling factor of about 5 dB, internal mixer loss of 10 dB and IF mismatch of 1 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1597  
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-yu Edward; Blundell, Raymond; Kimberk, Robert; Gol’tsman, Gregory url  openurl
  Title (up) Stabilisation of a terahertz hot-electron bolometer mixer with microwave feedback control Type Conference Article
  Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 18th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 193-198  
  Keywords waveguide NbN HEB mixers, Allan variance, stability  
  Abstract We report on implementation of microwave feedback control loop to stabilise the performance of an HEB mixer receiver. It is shown that the receiver sensitivity increases by a factor of 4 over a 16-minute scan, and the corresponding Allan time increases up to 10 seconds, as opposed to an open loop value of 1 second. Our experiments also demonstrate that the receiver sensitivity is limited by the intermediate frequency chain.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1421  
Permanent link to this record
 

 
Author Kooi, J. W.; Baselmans, J. J. A.; Baryshev, A.; Schieder, R.; Hajenius, M.; Gao, J.R.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G. url  doi
openurl 
  Title (up) Stability of heterodyne terahertz receivers Type Journal Article
  Year 2006 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.  
  Volume 100 Issue 6 Pages 064904 (1 to 9)  
  Keywords NbN HEB mixers  
  Abstract In this paper we discuss the stability of heterodyne terahertz receivers based on small volume NbN phonon cooled hot electron bolometers (HEBs). The stability of these receivers can be broken down in two parts: the intrinsic stability of the HEB mixer and the stability of the local oscillator (LO) signal injection scheme. Measurements show that the HEB mixer stability is limited by gain fluctuations with a 1∕f spectral distribution. In a 60MHz noise bandwidth this results in an Allan variance stability time of ∼0.3s. Measurement of the spectroscopic Allan variance between two intermediate frequency (IF) channels results in a much longer Allan variance stability time, i.e., 3s between a 2.5 and a 4.7GHz channel, and even longer for more closely spaced channels. This implies that the HEB mixer 1∕f noise is strongly correlated across the IF band and that the correlation gets stronger the closer the IF channels are spaced. In the second part of the paper we discuss atmospheric and mechanical system stability requirements on the LO-mixer cavity path length. We calculate the mixer output noise fluctuations as a result of small perturbations of the LO-mixer standing wave, and find very stringent mechanical and atmospheric tolerance requirements for receivers operating at terahertz frequencies.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-8979 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1444  
Permanent link to this record
 

 
Author Ryabchun, S.; Tong, C.-Y. E.; Blundell, R.; Kimberk, R.; Gol'tsman, G. url  doi
openurl 
  Title (up) Study of the effect of microwave radiation on the operation of HEB mixers in the terahertz frequency range Type Journal Article
  Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 17 Issue 2 Pages 391-394  
  Keywords NbN HEB mixers  
  Abstract We have investigated the effect of injecting microwave radiation, with a frequency much lower than that corresponding to the energy gap of the superconductor, on the performance of the hot-electron bolometer mixer incorporated into a THz heterodyne receiver. More specifically, we show that exposing the mixer to microwave radiation does not cause a significant rise of the receiver noise temperature and fall of the mixer conversion gain so long as the microwave power is a small fraction of local oscillator power. The injection of a small, but controlled amount of microwave power therefore enables active compensation of local oscillator power and coupling fluctuations which can significantly degrade the gain stability of hot electron bolometer mixer receivers.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1427  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: