toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Il'in, K. S.; Currie, M.; Lindgren, M.; Milostnaya, I. I.; Verevkin, A. A.; Gol'tsman, G. N.; Sobolewski, R. url  doi
openurl 
  Title (down) Quantum efficiency and time-domain response of superconducting NbN hot-electron photodetectors Type Journal Article
  Year 1999 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 9 Issue 2 Pages 3338-3341  
  Keywords NbN SSPD, SNSPD  
  Abstract We report our studies on the response of ultrathin superconducting NbN hot-electron photodetectors. We have measured the photoresponse of few-nm-thick, micron-size structures, which consisted of single and multiple microbridges, to radiation from the continuous-wave semiconductor laser and the femtosecond Ti:sapphire laser with the wavelength of 790 nm and 400 nm, respectively. The maximum responsivity was observed near the film's superconducting transition with the device optimally current-biased in the resistive state. The responsivity of the detector, normalized to its illuminated area and the coupling factor, was 220 A/W(3/spl times/10/sup 4/ V/W), which corresponded to a quantum efficiency of 340. The responsivity was wavelength independent from the far infrared to the ultraviolet range, and was at least two orders of magnitude higher than comparable semiconductor optical detectors. The time constant of the photoresponse signal was 45 ps, when was measured at 2.15 K in the resistive (switched) state using a cryogenic electro-optical sampling technique with subpicosecond resolution. The obtained results agree very well with our calculations performed using a two-temperature model of the electron heating in thin superconducting films.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1566  
Permanent link to this record
 

 
Author Korneev, A.; Matvienko, V.; Minaeva, O.; Milostnaya, I.; Rubtsova, I.; Chulkova, G.; Smirnov, K.; Voronov, V.; Gol’tsman, G.; Slysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R. url  doi
openurl 
  Title (down) Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared Type Journal Article
  Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 15 Issue 2 Pages 571-574  
  Keywords NbN SSPD, SNSPD, QE, NEP  
  Abstract We present our studies on the quantum efficiency (QE) and the noise equivalent power (NEP) of the latest-generation, nanostructured, superconducting, single-photon detectors (SSPDs) in the wavelength range from 0.5 to 5.6 /spl mu/m, operated at temperatures in the 2.0- to 4.2-K range. Our detectors are designed as 4-nm-thick and 100-nm-wide NbN meander-shaped stripes, patterned by electron-beam lithography and cover a 10/spl times/10-/spl mu/m/sup 2/ active area. The best-achieved QE at 2.0 K for 1.55-/spl mu/m photons is 17%, and QE for 1.3-/spl mu/m infrared photons reaches its saturation value of /spl sim/30%. The SSPD NEP at 2.0 K is as low as 5/spl times/10/sup -21/ W/Hz/sup -1/2/. Our nanostructured SSPDs, operated at 2.0 K, significantly outperform their semiconducting counterparts, and, together with their GHz counting rate and picosecond timing jitter, they are devices-of-choice for practical quantum key distribution systems and free-space (even interplanetary) quantum optical communications.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1558-2515 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1467  
Permanent link to this record
 

 
Author Stevens, M.; Hadfeld, R.; Schwall, R.; Nam, S.W.; and Mirin, R. openurl 
  Title (down) Quantum dot single photon sources studied with superconducting single photon detectors Type Journal Article
  Year 2006 Publication IEEE J. Sel. Topics Quantum Electron. Abbreviated Journal  
  Volume 12 Issue 6 Pages 1255-1267  
  Keywords SSPD, jitter, QD, QW  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ akorneev @ Serial 612  
Permanent link to this record
 

 
Author Polyakova, M.; Semenov, A. V.; Kovalyuk, V.; Ferrari, S.; Pernice, W. H. P.; Gol'tsman, G. N. url  doi
openurl 
  Title (down) Protocol of measuring hot-spot correlation length for SNSPDs with near-unity detection efficiency Type Journal Article
  Year 2019 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 29 Issue 5 Pages 1-5  
  Keywords SSPD, waveguide-integrated SNSPD, hot-spot interaction length  
  Abstract We present a simple quantum detector tomography protocol, which allows, without ambiguities, to measure the two-spot detection efficiency and extract the hot-spot interaction length of superconducting nanowire single photon detectors (SNSPDs) with unity intrinsic detection efficiency. We identify a significant parasitic contribution to the measured two-spot efficiency, related to an effect of the bias circuit, and find a way to rule out this contribution during data post-processing and directly in the experiment. From the data analysis for waveguide-integrated SNSPD, we find signatures of the saturation of the two-spot efficiency and hot-spot interaction length of order of 100 nm.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1187  
Permanent link to this record
 

 
Author Baeva, E.; Sidorova, M.; Korneev, A.; Goltsman, G. url  doi
openurl 
  Title (down) Precise measurement of the thermal conductivity of superconductor Type Conference Article
  Year 2018 Publication Proc. AIP Conf. Abbreviated Journal Proc. AIP Conf.  
  Volume 1936 Issue 1 Pages 020003 (1 to 4)  
  Keywords NbN SSPD, SNSPD  
  Abstract Measuring the thermal properties such as the heat capacity provide information about intrinsic mechanisms operated inside. In general, the ratio between electron and phonon specific heat Ce/Cp shows how the absorbed energy shared between electron and phonon subsystems. In this work we make estimations for amplitude-modulated absorption of THz radiation technique for investigation of the ratio Ce/Cp in superconducting Niobium Nitride (NbN) at T = Tc. Our results indicates that experimentally the frequency of modulation has to be extra large to extract the quantity. We perform a new technique allowed to work at low frequency with accurately measurement of absorbed power.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number doi:10.1063/1.5025441 Serial 1311  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: