|   | 
Details
   web
Records
Author Grotz, Bernhard; Hauf, Moritz V.; Dankerl, Markus; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Wrachtrup, Jörg; Stutzmann, Martin; Reinhard, Friedemann; Garrido, Jose A.
Title (up) Charge state manipulation of qubits in diamond Type Journal Article
Year 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.
Volume 3 Issue 729 Pages 6
Keywords fromIPMRAS
Abstract The nitrogen-vacancy (NV) centre in diamond is a promising candidate for a solid-state qubit. However, its charge state is known to be unstable, discharging from the qubit state NV- into the neutral state NV0 under various circumstances. Here we demonstrate that the charge state can be controlled by an electrolytic gate electrode. This way, single centres can be switched from an unknown non-fluorescent state into the neutral charge state NV0, and the population of an ensemble of centres can be shifted from NV0 to NV-. Numerical simulations confirm the manipulation of the charge state to be induced by the gate-controlled shift of the Fermi level at the diamond surface. This result opens the way to a dynamic control of transitions between charge states and to explore hitherto inaccessible states, such as NV+.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 770
Permanent link to this record
 

 
Author Kono, Junichiro
Title (up) Coherent terahertz control Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 5 Issue Pages 5-6
Keywords fromIPMRAS
Abstract Spin and charge terahertz excitations in solids are promising for implementing future technologies such as spintronics and quantum computation, but coherently controlling them has been a significant challenge. Researchers have now manipulated coherent spin waves in an antiferromagnet using the intense magnetic field of ultrashort terahertz pulses.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 773
Permanent link to this record
 

 
Author Smith, Devin H.; Gillett, Geoff; de Almeida, Marcelo P.; Branciard, Cyril; Fedrizzi, Alessandro; Weinhold, Till J.; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Wiseman, Howard M.; Nam, Sae Woo; White, Andrew G.
Title (up) Conclusive quantum steering with superconducting transition-edge sensors Type Journal Article
Year 2012 Publication Nature Communications Abbreviated Journal Nat. Comm.
Volume 3 Issue 625 Pages 6
Keywords fromIPMRAS
Abstract Quantum steering allows two parties to verify shared entanglement even if one measurement device is untrusted. A conclusive demonstration of steering through the violation of a steering inequality is of considerable fundamental interest and opens up applications in quantum communication. To date, all experimental tests with single-photon states have relied on post selection, allowing untrusted devices to cheat by hiding unfavourable events in losses. Here we close this 'detection loophole' by combining a highly efficient source of entangled photon pairs with superconducting transition-edge sensors. We achieve an unprecedented ~62% conditional detection efficiency of entangled photons and violate a steering inequality with the minimal number of measurement settings by 48 s.d.s. Our results provide a clear path to practical applications of steering and to a photonic loophole-free Bell test.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 768
Permanent link to this record
 

 
Author Pirandola, Stefano; Mancini, Stefano; Lloyd, Seth; Braunstein, Samuel L.
Title (up) Continuous-variable quantum cryptography using two-way quantum communication Type Journal Article
Year 2008 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 4 Issue 9 Pages 726-730
Keywords fromIPMRAS
Abstract Quantum cryptography has recently been extended to continuous-variable systems, such as the bosonic modes of the electromagnetic field possessing continuous degrees of freedom. In particular, several cryptographic protocols have been proposed and experimentally implemented using bosonic modes with Gaussian statistics. These protocols have shown the possibility of reaching very high secret key rates, even in the presence of strong losses in the quantum communication channel. Despite this robustness to loss, their security can be affected by more general attacks where extra Gaussian noise is introduced by the eavesdropper. Here, we show a `hardware solution' for enhancing the security thresholds of these protocols. This is possible by extending them to two-way quantum communication where subsequent uses of the quantum channel are suitably combined. In the resulting two-way schemes, one of the honest parties assists the secret encoding of the other, with the chance of a non-trivial superadditive enhancement of the security thresholds. These results should enable the extension of quantum cryptography to more complex quantum communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 798
Permanent link to this record
 

 
Author Nevou, L.; Liverini, V.; Friedli, P.; Castellano, F.; Bismuto, A.; Sigg, H.; Gramm, F.; Müller, E.; Faist, J.
Title (up) Current quantization in an optically driven electron pump based on self-assembled quantum dots Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue Pages 423–427
Keywords fromIPMRAS
Abstract The electronic structure of self-assembled semiconductor quantum dots consists of discrete atom-like states that can be populated with a well-defined number of electrons. This property can be used to fabricate a d.c. current standard that enables the unit of ampere to be independently defined. Here we report an optically pumped current source based on self-assembled InAs/GaAs quantum dots. The accuracy obtained so far is 10–1 and is limited by the uncertainty in the number of dots. At 10 K the device generates a current difference of 2.39 nA at a frequency of 1 kHz. The accuracy could be improved by site-selective growth techniques where the number of dots is fixed by pre-patterning. The results are promising for applications in electrical metrology, where a current standard is needed to close the so-called quantum metrological triangle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 841
Permanent link to this record
 

 
Author Kosako, Terukazu; Kadoya, Yutaka; Hofmann, Holger F.
Title (up) Directional control of light by a nano-optical Yagi–Uda antenna Type Journal Article
Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 4 Issue Pages 312 - 315
Keywords optical antennas
Abstract The plasmon resonance of metal nanoparticles can direct light from optical emitters in much the same way that radiofrequency antennas direct the emission from electrical circuits. Recently, rapid progress has been made in the realization of single-element antennas for optical waves. Because most of these devices are designed to optimize the local near-field coupling between the antenna and an emitter, the possibility of modifying the spatial radiation pattern has not yet received as much attention. In the radiofrequency regime, a typical antenna design for high directivity is the Yagi–Uda antenna, which essentially consists of a one-dimensional array of antenna elements driven by a single feed element. By fabricating a corresponding array of nanoparticles, similar radiation patterns can be obtained in the optical regime. Here, we present the experimental demonstration of directional control of radiation from a nano-optical Yagi–Uda antenna composed of appropriately tuned gold nanorods.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 747
Permanent link to this record
 

 
Author Korotkov, Alexander N.
Title (up) Entanglement preservation: The Sleeping Beauty approach Type Journal Article
Year 2012 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 8 Issue 2 Pages 107-108
Keywords fromIPMRAS
Abstract Two-qubit entanglement can be preserved by partially measuring the qubits to leave them in a 'lethargic' state. The original state is restored using quantum measurement reversal after the qubits have travelled through a decoherence channel.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 814
Permanent link to this record
 

 
Author Ursin, R.; Tiefenbacher, F.; Schmitt-Manderbach, T.; Weier, H.; Scheidl, T.; Lindenthal, M.; Blauensteiner, B.; Jennewein, T.; Perdigues, J.; Trojek, P.; Ömer, B.; Fürst, M.; Meyenburg, M.; Rarity, J.; Sodnik, Z.; Barbieri, C.; Weinfurter, H.; Zeilinger, A.
Title (up) Entanglement-based quantum communication over 144km Type Journal Article
Year 2007 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 3 Issue 7 Pages 481-486
Keywords fromIPMRAS
Abstract Quantum entanglement is the main resource to endow the field of quantum information processing with powers that exceed those of classical communication and computation. In view of applications such as quantum cryptography or quantum teleportation, extension of quantum-entanglement-based protocols to global distances is of considerable practical interest. Here we experimentally demonstrate entanglement-based quantum key distribution over 144km. One photon is measured locally at the Canary Island of La Palma, whereas the other is sent over an optical free-space link to Tenerife, where the Optical Ground Station of the European Space Agency acts as the receiver. This exceeds previous free-space experiments by more than an order of magnitude in distance, and is an essential step towards future satellite-based quantum communication and experimental tests on quantum physics in space.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 797
Permanent link to this record
 

 
Author Toyabe, Shoichi; Sagawa, Takahiro; Ueda, Masahito; Muneyuki, Eiro; Sano, Masaki
Title (up) Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality Type Journal Article
Year 2010 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 6 Issue 12 Pages 988-992
Keywords fromIPMRAS
Abstract In 1929, Leo Szilard invented a feedback protocol in which a hypothetical intelligence called Maxwell's demon pumps heat from an isothermal environment and transduces it to work. After an intense controversy that lasted over eighty years; it was finally clarified that the demon's role does not contradict the second law of thermodynamics, implying that we can convert information to free energy in principle. Nevertheless, experimental demonstration of this information-to-energy conversion has been elusive. Here, we demonstrate that a nonequilibrium feedback manipulation of a Brownian particle based on information about its location achieves a Szilard-type information-energy conversion. Under real-time feedback control, the particle climbs up a spiral-stairs-like potential exerted by an electric field and obtains free energy larger than the amount of work performed on it. This enables us to verify the generalized Jarzynski equality, or a new fundamental principle of “information-heat engine” which converts information to energy by feedback control.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 831
Permanent link to this record
 

 
Author Lu, Chao-Yang; Zhou, Xiao-Qi; Gühne, Otfried; Gao, Wei-Bo; Zhang, Jin; Yuan, Zhen-Sheng; Goebel, Alexander; Yang, Tao; Pan, Jian-Wei
Title (up) Experimental entanglement of six photons in graph states Type Journal Article
Year 2007 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 3 Issue 2 Pages 91-95
Keywords fromIPMRAS
Abstract Graph states-multipartite entangled states that can be represented by mathematical graphs-are important resources for quantum computation, quantum error correction, studies of multiparticle entanglement and fundamental tests of non-locality and decoherence. Here, we demonstrate the experimental entanglement of six photons and engineering of multiqubit graph states. We have created two important examples of graph states, a six-photon Greenberger-Horne-Zeilinger state, the largest photonic Schrödinger cat so far, and a six-photon cluster state, a state-of-the-art `one-way quantum computer'. With small modifications, our method allows us, in principle, to create various further graph states, and therefore could open the way to experimental tests of, for example, quantum algorithms or loss- and fault-tolerant one-way quantum computation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 796
Permanent link to this record
 

 
Author Dada, Adetunmise C.; Leach, Jonathan; Buller, Gerald S.; Padgett, Miles J.; Andersson, Erika
Title (up) Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 9 Pages 677-680
Keywords fromIPMRAS
Abstract Quantum entanglement plays a vital role in many quantum-information and communication tasks. Entangled states of higher-dimensional systems are of great interest owing to the extended possibilities they provide. For example, they enable the realization of new types of quantum information scheme that can offer higher-information-density coding and greater resilience to errors than can be achieved with entangled two-dimensional systems (see ref. and references therein). Closing the detection loophole in Bell test experiments is also more experimentally feasible when higher-dimensional entangled systems are used. We have measured previously untested correlations between two photons to experimentally demonstrate high-dimensional entangled states. We obtain violations of Bell-type inequalities generalized to d-dimensional systems up to d=12. Furthermore, the violations are strong enough to indicate genuine 11-dimensional entanglement. Our experiments use photons entangled in orbital angular momentum, generated through spontaneous parametric down-conversion, and manipulated using computer-controlled holograms.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 828
Permanent link to this record
 

 
Author Prevedel, Robert; Hamel, Deny R.; Colbeck, Roger; Fisher, Kent; Resch, Kevin J.
Title (up) Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 10 Pages 757-761
Keywords fromIPMRAS
Abstract Heisenberg's uncertainty principle provides a fundamental limitation on the ability of an observer holding classical information to predict the outcome when one of two measurements is performed on a quantum system. However, an observer with access to a particle (stored in a quantum memory) which is entangled with the system generally has a reduced uncertainty: indeed, if the particle and system are maximally entangled, the observer can perfectly predict the outcome of whichever measurement is chosen. This effect has recently been quantified in a new entropic uncertainty relation. Here we experimentally investigate this relation, showing its effectiveness as an efficient entanglement witness. We use entangled photon pairs, an optical delay line serving as a simple quantum memory and fast, active feed-forward. Our results quantitatively agree with the new uncertainty relation. Our technique acts as a witness for almost all entangled states in our experiment as we obtain lower uncertainties than would be possible without the entangled particle.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 821
Permanent link to this record
 

 
Author Berlín, Guido; Brassard, Gilles; Bussières, Félix; Godbout, Nicolas; Slater, Joshua A.; Tittel, Wolfgang
Title (up) Experimental loss-tolerant quantum coin flipping Type Journal Article
Year 2011 Publication Nature Communications Abbreviated Journal Nat. Comm.
Volume 2 Issue 561 Pages 7
Keywords fromIPMRAS
Abstract Coin flipping is a cryptographic primitive in which two distrustful parties wish to generate a random bit to choose between two alternatives. This task is impossible to realize when it relies solely on the asynchronous exchange of classical bits: one dishonest player has complete control over the final outcome. It is only when coin flipping is supplemented with quantum communication that this problem can be alleviated, although partial bias remains. Unfortunately, practical systems are subject to loss of quantum data, which allows a cheater to force a bias that is complete or arbitrarily close to complete in all previous protocols and implementations. Here we report on the first experimental demonstration of a quantum coin-flipping protocol for which loss cannot be exploited to cheat better. By eliminating the problem of loss, which is unavoidable in any realistic setting, quantum coin flipping takes a significant step towards real-world applications of quantum communication.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 766
Permanent link to this record
 

 
Author Zhang, Qiang; Goebel, Alexander; Wagenknecht, Claudia; Chen, Yu-Ao; Zhao, Bo; Yang, Tao; Mair, Alois; Schmiedmayer, Jörg; Pan, Jian-Wei
Title (up) Experimental quantum teleportation of a two-qubit composite system Type Journal Article
Year 2006 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 2 Issue 10 Pages 678-682
Keywords fromIPMRAS; quantum teleportation
Abstract Quantum teleportation, a way to transfer the state of a quantum system from one location to another, is central to quantum communication and plays an important role in a number of quantum computation protocols. Previous experimental demonstrations have been implemented with single photonic or ionic qubits. However, teleportation of single qubits is insufficient for a large-scale realization of quantum communication and computation. Here, we present the experimental realization of quantum teleportation of a two-qubit composite system. In the experiment, we develop and exploit a six-photon interferometer to teleport an arbitrary polarization state of two photons. The observed teleportation fidelities for different initial states are all well beyond the state estimation limit of 0.40 for a two-qubit system. Not only does our six-photon interferometer provide an important step towards teleportation of a complex system, it will also enable future experimental investigations on a number of fundamental quantum communication and computation protocols
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 795
Permanent link to this record
 

 
Author Brida, G.; Genovese, M.; Ruo Berchera, I.
Title (up) Experimental realization of sub-shot-noise quantum imaging Type Journal Article
Year 2010 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 4 Issue 4 Pages 227-230
Keywords fromIPMRAS
Abstract The properties of quantum states have led to the development of new technologies, ranging from quantum information to quantum metrology. A recent field of research to emerge is quantum imaging, which aims to overcome the limits of classical imaging by making use of the spatial properties of quantum states of light . In particular, quantum correlations between twin beams represent a fundamental resource for these studies. One of the most interesting proposed schemes takes advantage of the spatial quantum correlations between parametric down-conversion light beams to realize sub-shot-noise imaging of weak absorbing objects, leading ideally to noise-free imaging. Here, we present the first experimental realization of this scheme, showing its potential to achieve a larger signal-to-noise ratio than classical imaging methods. This work represents the starting point for this quantum technology, which we anticipate will have applications when there is a requirement for low-photon-flux illumination (for example for use with biological samples).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 771
Permanent link to this record