|   | 
Details
   web
Records
Author Il'in, K. S.; Lindgren, M.; Currie, M. A.; Semenov, D.; Gol'tsman, G. N.; Sobolewski, Roman; Cherednichenko, S. I.; Gershenzon, E. M.
Title (up) Picosecond hot-electron energy relaxation in NbN superconducting photodetectors Type Journal Article
Year 2000 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 76 Issue 19 Pages 2752-2754
Keywords NbN HEB detectors, two-temperature model, IF bandwidth
Abstract We report time-resolved characterization of superconducting NbN hot-electron photodetectors using an electro-optic sampling method. Our samples were patterned into micron-size microbridges from 3.5-nm-thick NbN films deposited on sapphire substrates. The devices were illuminated with 100 fs optical pulses, and the photoresponse was measured in the ambient temperature range between 2.15 and 10.6 K (superconducting temperature transition TC). The experimental data agreed very well with the nonequilibrium hot-electron, two-temperature model. The quasiparticle thermalization time was ambient temperature independent and was measured to be 6.5 ps. The inelastic electron–phonon scattering time Ï„e–ph tended to decrease with the temperature increase, although its change remained within the experimental error, while the phonon escape time Ï„es decreased almost by a factor of two when the sample was put in direct contact with superfluid helium. Specifically, Ï„e–ph and Ï„es, fitted by the two-temperature model, were equal to 11.6 and 21 ps at 2.15 K, and 10(±2) and 38 ps at 10.5 K, respectively. The obtained value of Ï„e–ph shows that the maximum intermediate frequency bandwidth of NbN hot-electron phonon-cooled mixers operating at TC can reach 16(+4/–3) GHz if one eliminates the bolometric phonon-heating effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 856
Permanent link to this record
 

 
Author Darula, Marian; Semenov, Alex D.; Hübers, Heinz-Wilhelm; Schubert, Josef
Title (up) Quasioptical high-Tc superconductor Josephson mixer at terahertz frequencies Type Abstract
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 515
Keywords HTS Josephson mixers
Abstract Mixers based on Josephson junctions from conventional superconductor materials have demonstrated excellent performance at subgap frequencies. The advantages of Josephson mixers are low optimal power of the local oscillator and large intermediate frequency bandwidth but their noise temperature increases dramatically at frequencies corresponding to the energy gap of the superconductor, which is typically below 1 THz for widely used materials. The large energy gap of oxide superconductors makes them promising candidates for development of terahertz Josephson mixers. Here we report on experimental study of the quasioptical mixer utilizing bicrystal Josephson junction from high-transition-temperature YBa 2 Cu 3 O 7-δ film. Junctions with a width of 2 µm were fabricated from 100 nm thick laser ablated films on bicrystal MgO substrates and had the and the J C R n product of about 2 mV at 4.2 K. The planar complementary logarithmic spiral antenna incorporated into co-planar waveguide was patterned from 200 nm thick gold film thermally evaporated in situ on top of the YBa 2 Cu 3 O 7-δ film. The mixer chip was clamped to the extended hemispherical silicon lens. Performance of the mixer was investigated at 4.5 K bath temperature. We used FIR laser as a local oscillator at frequencies 0.698 and 2.52 THz. System noise temperature (DSB) was determined from Y-factor measured with 300 K and 77 K loads. At 0.698 THz the lowest noise temperature 1750 K was observed when the mixer was biased with the fixed current to the region in the vicinity of either the first Shapiro step or the critical current. Between these two bias points the noise temperature increased to ≈ 20000 K. As function of the local oscillator power the noise temperature reached the minimum when the critical current was suppressed to the half of its equilibrium value. Power of the local oscillator absorbed by the mixer at optimal operation was of the order 100 nW. The present design of our antenna limits the upper operation frequency to the value of 1.8 THz. Nevertheless, we clearly observed Shapiro steps at the frequency 2.52 THz. Bearing in mind an improved design of the antenna, we estimate the 3000 K DSB noise temperature at this frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1555
Permanent link to this record
 

 
Author Leisawitz, David T.; Danchi, William C.; Dipirro, Michael J.; Feinberg, Lee D.; Gezari, Daniel Y.; Hagopian, Mike; Langer, William D.; Mather, John C.; Moseley, Jr. Samuel H.; Shao, Michael; Silverberg, Robert F.; Staguhn, Johannes G.; Swain, Mark R.; Yorke, Harold W.; Zhang, Xiaolei
Title (up) Scientific motivation and technology requirements for the SPIRIT and SPECS far-infrared/submillimeter space interferometers Type Conference Article
Year 2000 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 4013 Issue Pages 36-46
Keywords HEB applications
Abstract Far infrared interferometers in space would enable extraordinary measurements of the early universe, the formation of galaxies, stars, and planets, and would have great discovery potential. Since half the luminosity of the universe and 98% of the photons released since the Big Bang are now observable at far IR wavelengths (40 – 500 micrometers ), and the Earth's atmosphere prevents sensitive observations from the ground, this is one of the last unexplored frontiers of space astronomy. We present the engineering and technology requirements that stem from a set of compelling scientific goals and discuss possible configurations for two proposed NASA missions, the Space Infrared Interferometric Telescope and the Submillimeter Probe of the Evolution of Cosmic Structure.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 909
Permanent link to this record
 

 
Author Gundlach, K. H.; Schicke, M.
Title (up) SIS and bolometer mixers for terahertz frequencies Type Journal Article
Year 2000 Publication Supercond. Sci. Technol Abbreviated Journal
Volume 13 Issue Pages 181-187
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ sis_Gundlach_2000 Serial 302
Permanent link to this record
 

 
Author Tong, C.-Y. Edward; Kawamura, Jonathan; Todd, R. Hunter; Papa, D. Cosmo; Blundell, Raymond.; Smith, Michael; Patt, Ferdinand; Gol'tsman, Gregory; Gershenzon, Eugene
Title (up) Successful operation of a 1 THz NbN hot-electron bolometer receiver Type Conference Article
Year 2000 Publication Proc. 11th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 11th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 49-59
Keywords NbN HEB mixers, applications
Abstract A phonon-cooled NbN superconductive hot-electron bolometer receiver covering the frequency range 0.8-1.04 THz has successfully been used for astronomical observation at the Sub-Millimeter Telescope Observatory on Mount Graham, Arizona. This waveguide heterodyne receiver is a modified version of our fixed-tuned 800 GHz HEB receiver to allow for operation beyond 1 THz. The measured noise temperature of this receiver is about 1250 K at 0.81 THz, 560 K at 0.84 THz, and 1600 K at 1.035 THz. It has a 1 GHz wide IF bandwidth, centered at 1.8 GHz. This receiver has recently been used to detect the CO (9-8) molecular line emission at 1.037 THz in the Orion nebula. This is the first time a ground-based heterodyne receiver has been used to detect a celestial source above 1 THz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 303
Permanent link to this record