|   | 
Details
   web
Records
Author Iomdina, E. N.; Seliverstov, S. V.; Teplyakova, K. O.; Jani, E. V.; Pozdniakova, V. V.; Polyakova, O. N.; Goltsman, G. N.
Title (down) Terahertz scanning of the rabbit cornea with experimental UVB-induced damage: in vivo assessment of hydration and its verification Type Journal Article
Year 2021 Publication J. Biomed. Opt. Abbreviated Journal J. Biomed. Opt.
Volume 26 Issue 4 Pages
Keywords medicine; scheimpflug imaging; UVB; confocal microscopy; cornea; optical coherent tomography; rabbit eyes; terahertz radiation
Abstract SIGNIFICANCE: Water content plays a vital role in the normally functioning visual system; even a minor disruption in the water balance may be harmful. Today, no direct method exists for corneal hydration assessment, while it could be instrumental in early diagnosis and control of a variety of eye diseases. The use of terahertz (THz) radiation, which is highly sensitive to water content, appears to be very promising. AIM: To find out how THz scanning parameters of corneal tissue measured by an experimental setup, specially developed for in vivo contactless estimations of corneal reflectivity coefficient (RC), are related to pathological changes in the cornea caused by B-band ultraviolet (UVB) exposure. APPROACH: The setup was tested on rabbit eyes in vivo. Prior to the course of UVB irradiation and 1, 5, and 30 days after it, a series of examinations of the corneal state was made. At the same time points, corneal hydration was assessed by measuring RC. RESULTS: The obtained data confirmed the negative impact of UVB irradiation course on the intensity of tear production and on the corneal thickness and optical parameters. A significant (1.8 times) increase in RC on the 5th day after the irradiation course, followed by a slight decrease on the 30th day after it was revealed. The RC increase measured 5 days after the UVB irradiation course generally corresponded to the increase (by a factor of 1.3) of tear production. RC increase occurred with the corneal edema, which was manifested by corneal thickening (by 18.2% in the middle area and 17.6% in corneal periphery) and an increased volume of corneal tissue (by 17.6%). CONCLUSIONS: Our results demonstrate that the proposed approach can be used for in vivo contactless estimation of the reflectivity of rabbit cornea in the THz range and, thereby, of cornea hydration.
Address National Research University Higher School of Economics, Moscow Institute of Electronics and Mathema, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1083-3668 ISBN Medium
Area Expedition Conference
Notes PMID:33834684; PMCID:PMC8027227 Approved no
Call Number Serial 1258
Permanent link to this record
 

 
Author Iomdina, E. N.; Seliverstov, S. V.; Sianosyan, A. A.; Teplyakova, K. O.; Rusova, A. A.; Goltsman, G. N.
Title (down) Terahertz scanning for evaluation of corneal and scleral hydration Type Journal Article
Year 2018 Publication Sovremennye tehnologii v medicine Abbreviated Journal STM
Volume 10 Issue 4 Pages 143-149
Keywords BWO; Golay cell; medicine; cornea; sclera; THz radiation; corneal hydration; backward-wave oscillator; avalanche transit-time diode; IMPATT diode
Abstract The aim of the investigation was to study the prospects of using continuous THz scanning of the cornea and the sclera to determine water concentration in these tissues and on the basis of the obtained data to develop the experimental installation for monitoring corneal and scleral hydration degree.Materials and Methods. To evaluate corneal and scleral transmittance and reflectance spectra in the THz range, the developed experimental installations were used to study 3 rabbit corneas and 3 scleras, 2 whole rabbit eyes, and 3 human scleras. Besides, two rabbit eyes were studied in vivo prior to keratorefractive surgery as well as 10 and 21 days following the surgery (LASIK).Results. There have been created novel experimental installations enabling in vitro evaluation of frequency dependence of corneal and scleral transmittance coefficients and reflectance coefficients on water percentage in the THz range. Decrease in corneal water content by 1% was found to lead to reliably established decrease in the reflected signal by 13%. The reflectance spectrum of the whole rabbit eye was measured in the range of 0.13–0.32 THz. The study revealed the differences between the indices of rabbit cornea and sclera, as well as rabbit and human sclera. There was developed a laboratory model of the installation for in vivo evaluation of corneal and scleral hydration using THz radiation.Conclusion. The preliminary findings show that the proposed technique based on the use of continuous THz radiation can be employed to create a device for noninvasive control of corneal and scleral hydration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1315
Permanent link to this record
 

 
Author Smirnov, A. V.; Karmantsov, M. S.; Smirnov, K. V.; Vakhtomin, Y. B.; Masterov, D. V.; Tarkhov, M. A.; Pavlov, S. A.; Parafin, A. E.
Title (down) Terahertz response of thin-film YBCO bolometers Type Journal Article
Year 2012 Publication Tech. Phys. Abbreviated Journal Tech. Phys.
Volume 57 Issue 12 Pages 1716-1719
Keywords YBCO HEB
Abstract The bolometric response of high-temperature thin-film YBCO superconducting detectors to an electromagnetic radiation with a frequency of 2.5 THz is measured for the first time. The minimum value of the noise-equivalent power of the detectors is 3.5 × 10−9 W/Hz−−−√. The feasibility of further increasing the sensitivity of the detectors is discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7842 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1817
Permanent link to this record
 

 
Author Ciulin, V.; Carter, S. G.; Sherwin, M. S.
Title (down) Terahertz optical mixing in biased GaAs single quantum wells Type Journal Article
Year 2004 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B
Volume 70 Issue 11 Pages 115312-(1-6)
Keywords optical mixing
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1098-0121 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 501
Permanent link to this record
 

 
Author Ozhegov, R. V.; Gorshkov, K. N.; Smirnov, K. V.; Gol’tsman, G. N.; Filippenko, L. V.; Koshelets, V. P.
Title (down) Terahertz imaging system based on superconducting integrated receiver Type Conference Article
Year 2010 Publication Proc. 2-nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications Abbreviated Journal Proc. 2-nd Int. Conf. Terahertz and Microwave radiation: Generation, Detection and Applications
Volume Issue Pages 20-22
Keywords SIS mixer, SIR
Abstract The development of terahertz imaging instruments for security systems is on the cutting edge of terahertz technology. We are developing a THz imaging system based on a superconducting integrated receiver (SIR). An SIR is a new type of heterodyne receiver based on an SIS mixer integrated with a flux-flow oscillator (FFO) and a harmonic mixer which is used for phase-locking the FFO. Developing an array of SIRs would allow obtaining amplitude and phase characteristics of incident radiation in the plane of the receiver. Employing an SIR in an imaging system means building an entirely new instrument with many advantages compare to traditional systems: i) high temperature resolution, comparable to the best results for incoherent receivers; ii) high spectral resolution allowing spectral analysis of various substances; iii) the local oscillator frequency can be varied to obtain images at different frequencies, effectively providing “color” images; iv) since a heterodyne receiver preserves the phase of the radiation, it is possible to construct 3D images. The paper presents a prototype THz imaging system using an 1 pixel SIR. We have studied the dependence of the noise equivalent temperature difference (NETD) on the integration time and also possible ways of achieving best possible sensitivity. An NETD of 13 mK was obtained with an integration time of 1 sec a detection bandwidth of 4 GHz at a local oscillator frequency of 520 GHz. An important advantage of an FFO is its wide operation range: 300-700 GHz.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number ozhegov2010terahertz Serial 1397
Permanent link to this record