toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Gershenzon, E. M.; Gershenzon, M. E.; Goltsman, G. N.; Lulkin, A.; Semenov, A. D.; Sergeev, A. V. url  openurl
  Title (up) Electron-phonon interaction in ultrathin Nb films Type Journal Article
  Year 1990 Publication Sov. Phys. JETP Abbreviated Journal Sov. Phys. JETP  
  Volume 70 Issue 3 Pages 505-511  
  Keywords Nb films  
  Abstract A study was made of the heating of electrons in normal resistive states of superconducting thin Nb films. The directly determined relaxation time of the resistance of a sample and the rise of the electron temperature were used to find the electron-phonon interaction time rep,, The dependence of rep, on the mean free path of electrons re,, a 1-'demonstrated, in agreement with the theoretical predictions, that the contribution of the inelastic scattering of electrons by impurities to the energy relaxation process decreased at low temperatures and the observed temperature dependence rep, a T 2 was due to a modification of the phonon spectrum in thin fllms.

1. Much new information on the electron-phonon interaction time?;,, in thin films of normal metals and superconductors has been published recently. This information has been obtained mainly as a result of two types of measurement. One includes experiments on weak electron localization investigated by the method of quantum interference corrections to the conductivity of disordered conductors, which can be used to find the relaxation time T, of the phase of the electron wave function. In the absence of the scattering of electrons by paramagnetic impurities the relaxation time T, is associated with the most effective process of energy relaxation: T;= TL+ rep;, where T,, is the electronelectron relaxation time. At low temperatures, when the dependence T; a T is exhibited by thin disordered films, the dominant channel is that of the electron-electron relaxation and there is a lower limit to the temperature range in which rep, can be investigated.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 241  
Permanent link to this record
 

 
Author Sidorova, M.; Semenov, A.; Korneev, A.; Chulkova, G.; Korneeva, Y.; Mikhailov, M.; Devizenko, A.; Kozorezov, A.; Goltsman, G. url  openurl
  Title (up) Electron-phonon relaxation time in ultrathin tungsten silicon film Type Miscellaneous
  Year 2018 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords WSi film  
  Abstract Using amplitude-modulated absorption of sub-THz radiation (AMAR) method, we studied electron-phonon relaxation in thin disordered films of tungsten silicide. We found a response time ~ 800 ps at critical temperature Tc = 3.4 K, which scales as minus 3 in the temperature range from 1.8 to 3.4 K. We discuss mechanisms, which can result in a strong phonon bottle-neck effect in a few nanometers thick film and yield a substantial difference between the measured time, characterizing response at modulation frequency, and the inelastic electron-phonon relaxation time. We estimate the electron-phonon relaxation time to be in the range ~ 100-200 ps at 3.4 K.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1341 Approved no  
  Call Number Serial 1340  
Permanent link to this record
 

 
Author Karasik, B. S.; Il'in, K. S.; Ptitsina, N. G.; Gol'tsman, G. N.; Gershenzon, E. M.; Pechen', E. V.; Krasnosvobodtsev, S. I. url  openurl
  Title (up) Electron-phonon scattering rate in impure NbC films Type Abstract
  Year 1998 Publication NASA/ADS Abbreviated Journal NASA/ADS  
  Volume Issue Pages Y35.08  
  Keywords NbC films  
  Abstract The study of the electron-phonon interaction in thin (20 nm) NbC films with electron mean free path l=2-13 nm gives an evidence that electron scattering is significantly modified due to the interference between electron-phonon and elastic electron scattering from impurities. The interference ~T^2-term, which is proportional to the residual resistivity, dominates over the Bloch-Grüneisen contribution to resistivity at low temperatures up to 60 K. The electron energy relaxation rate is directly measured via the relaxation of hot electrons heated by modulated electromagnetic radiation. In the temperature range 1.5 – 10 K the relaxation rate shows a weak dependence on the electron mean free path and strong temperature dependence T^n with the exponent n = 2.5-3. This behaviour is well explained by the theory of the electron-phonon-impurity interference taking into account the electron coupling with transverse phonons determined from the resistivity data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference American Physical Society, Annual March Meeting, March 16-20, 1998 Los Angeles, CA  
  Notes Approved no  
  Call Number Serial 1591  
Permanent link to this record
 

 
Author Il'in, K. S.; Karasik, B. S.; Ptitsina, N. G.; Sergeev, A. V.; Gol'tsman, G. N.; Gershenzon, E. M.; Pechen, E. V.; Krasnosvobodtsev, S. I. url  doi
openurl 
  Title (up) Electron-phonon-impurity interference in thin NbC films: electron inelastic scattering time and corrections to resistivity Type Conference Article
  Year 1996 Publication Czech. J. Phys. Abbreviated Journal Czech. J. Phys.  
  Volume 46 Issue S2 Pages 857-858  
  Keywords NbC films  
  Abstract Complex study of transport properties of impure NbC films with the electron mean free pathl=0.6–13 nm show the crucial role of the electron-phonon-impurity interference (EPII). In the temperature range 20–70 K we found the interference correction to resistivity proportional to T2 and to the residual resistivity of the film. Using the comprehensive theory of EPII, we determine the electron coupling with transverse phonons and calculate the electron inelastic scattering time. Direct measurements of the inelastic electron scattering time using a response to a high-frequency amplitude modulated cw radiation agree well with the theory.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0011-4626 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1617  
Permanent link to this record
 

 
Author Yang, Y.; Fedorov, G.; Shafranjuk, S. E.; Klapwijk, T. M.; Cooper, B. K.; Lewis, R. M.; Lobb, C. J.; Barbara, P. url  doi
openurl 
  Title (up) Electronic transport and possible superconductivity at Van Hove singularities in carbon nanotubes Type Journal Article
  Year 2015 Publication Nano Lett. Abbreviated Journal Nano Lett.  
  Volume 15 Issue 12 Pages 7859-7866  
  Keywords carbon nanotubes, CNT, tunable superconductivity, van Hove singularities  
  Abstract Van Hove singularities (VHSs) are a hallmark of reduced dimensionality, leading to a divergent density of states in one and two dimensions and predictions of new electronic properties when the Fermi energy is close to these divergences. In carbon nanotubes, VHSs mark the onset of new subbands. They are elusive in standard electronic transport characterization measurements because they do not typically appear as notable features and therefore their effect on the nanotube conductance is largely unexplored. Here we report conductance measurements of carbon nanotubes where VHSs are clearly revealed by interference patterns of the electronic wave functions, showing both a sharp increase of quantum capacitance, and a sharp reduction of energy level spacing, consistent with an upsurge of density of states. At VHSs, we also measure an anomalous increase of conductance below a temperature of about 30 K. We argue that this transport feature is consistent with the formation of Cooper pairs in the nanotube.  
  Address Department of Physics, Georgetown University , Washington, District of Columbia 20057, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1530-6984 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:26506109; Suuplementary info (attached to pdf) DOI: 10.1021/acs.nanolett.5b02564 Approved no  
  Call Number Serial 1782  
Permanent link to this record
 

 
Author Kardakova, A. I.; Coumou, P. C. J. J.; Finkel, M. I.; Morozov, D. V.; An, P. P.; Goltsman, G. N.; Klapwijk, T. M. url  doi
openurl 
  Title (up) Electron–phonon energy relaxation time in thin strongly disordered titanium nitride films Type Journal Article
  Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.  
  Volume 25 Issue 3 Pages 1-4  
  Keywords TiN MKID  
  Abstract We have measured the energy relaxation times from the electron bath to the phonon bath in strongly disordered TiN films grown by atomic layer deposition. The measured values of τ eph vary from 12 to 91 ns. Over a temperature range from 3.4 to 1.7 K, they follow T -3 temperature dependence, which are consistent with values of τ eph reported previously for sputtered TiN films. For the most disordered film, with an effective elastic mean free path of 0.35 nm, we find a faster relaxation and a stronger temperature dependence, which may be an additional indication of the influence of strong disorder on a superconductor.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-8223 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1296  
Permanent link to this record
 

 
Author Sergeev, A.; Karasik, B. S.; Ptitsina, N. G.; Chulkova, G. M.; Il'in, K. S.; Gershenzon, E. M. url  doi
openurl 
  Title (up) Electron–phonon interaction in disordered conductors Type Journal Article
  Year 1999 Publication Phys. Rev. B Condens. Matter Abbreviated Journal Phys. Rev. B Condens. Matter  
  Volume 263-264 Issue Pages 190-192  
  Keywords disordered conductors, electron-phonon interaction  
  Abstract The electron–phonon interaction is strongly modified in conductors with a small value of the electron mean free path (impure metals, thin films). As a result, the temperature dependencies of both the inelastic electron scattering rate and resistivity differ significantly from those for pure bulk materials. Recent complex measurements have shown that modified dependencies are well described at K by the electron interaction with transverse phonons. At helium temperatures, available data are conflicting, and cannot be described by an universal model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0921-4526 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1765  
Permanent link to this record
 

 
Author Smirnov, K. V.; Ptitsina, N. G.; Vakhtomin, Y. B.; Verevkin, A. A.; Gol’tsman, G. N.; Gershenzon, E. M. url  doi
openurl 
  Title (up) Energy relaxation of two-dimensional electrons in the quantum Hall effect regime Type Journal Article
  Year 2000 Publication JETP Lett. Abbreviated Journal JETP Lett.  
  Volume 71 Issue 1 Pages 31-34  
  Keywords 2DEG, GaAs/AlGaAs heterostructures  
  Abstract The mm-wave spectroscopy with high temporal resolution is used to measure the energy relaxation times τe of 2D electrons in GaAs/AlGaAs heterostructures in magnetic fields B=0–4 T under quasi-equilibrium conditions at T=4.2 K. With increasing B, a considerable increase in τe from 0.9 to 25 ns is observed. For high B and low values of the filling factor ν, the energy relaxation rate τ −1e oscillates. The depth of these oscillations and the positions of maxima depend on the filling factor ν. For ν>5, the relaxation rate τ −1e is maximum when the Fermi level lies in the region of the localized states between the Landau levels. For lower values of ν, the relaxation rate is maximum at half-integer values of τ −1e when the Fermi level is coincident with the Landau level. The characteristic features of the dependence τ −1e (B) are explained by different contributions of the intralevel and interlevel electron-phonon transitions to the process of the energy relaxation of 2D electrons.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0021-3640 ISBN Medium  
  Area Expedition Conference  
  Notes http://jetpletters.ru/ps/899/article_13838.shtml (“Энергетическая релаксация двумерных электронов в области квантового эффекта Холла”) Approved no  
  Call Number Serial 1559  
Permanent link to this record
 

 
Author Florya, I. N.; Korneeva, Y. P.; Sidorova, M. V.; Golikov, A. D.; Gaiduchenko, I. A.; Fedorov, G. E.; Korneev, A. A.; Voronov, B. M.; Goltsman, G. N.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R. url  doi
openurl 
  Title (up) Energy relaxtation and hot spot formation in superconducting single photon detectors SSPDs Type Conference Article
  Year 2015 Publication EPJ Web of Conferences Abbreviated Journal EPJ Web of Conferences  
  Volume 103 Issue Pages 10004 (1 to 2)  
  Keywords SSPD, SNSPD  
  Abstract We have studied the mechanism of energy relaxation and resistive state formation after absorption of a single photon for different wavelengths and materials of single photon detectors. Our results are in good agreement with the hot spot model.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2100-014X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1351  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Kagane, M. L. url  openurl
  Title (up) Energy spectrum of acceptors in germanium and its response to a magnetic field Type Journal Article
  Year 1977 Publication Sov. Phys. JETP Abbreviated Journal Sov. Phys. JETP  
  Volume 45 Issue 4 Pages 769-776  
  Keywords p-Ge, photoconductivity, energy spectrum, magnetic field  
  Abstract We investigated the spectrum of the submillimeter photoconductivity of p-Ge at helium temperatures and the effects of a magnetic field up to 40 kOe on the spectrum. A large number of lines of transitions between the excited states of the acceptors was observed, some of the lines were identified, and the energies of a number of spectral levels B, Al, Ga, In, and TI in Ge were identified. The results are compared with calculations and with experimental data obtained from the spectra of the photoexcitation of the ground state of the impurities. Using one transition as an example, we discuss the splitting of the excited states of acceptors in the magnetic field and under uniaxial compression.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1727  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: