|   | 
Details
   web
Records
Author Iomdina, E. N.; Seliverstov, S. V.; Sianosyan, A. A.; Teplyakova, K. O.; Rusova, A. A.; Goltsman, G. N.
Title (up) Terahertz scanning for evaluation of corneal and scleral hydration Type Journal Article
Year 2018 Publication Sovremennye tehnologii v medicine Abbreviated Journal STM
Volume 10 Issue 4 Pages 143-149
Keywords BWO; Golay cell; medicine; cornea; sclera; THz radiation; corneal hydration; backward-wave oscillator; avalanche transit-time diode; IMPATT diode
Abstract The aim of the investigation was to study the prospects of using continuous THz scanning of the cornea and the sclera to determine water concentration in these tissues and on the basis of the obtained data to develop the experimental installation for monitoring corneal and scleral hydration degree.Materials and Methods. To evaluate corneal and scleral transmittance and reflectance spectra in the THz range, the developed experimental installations were used to study 3 rabbit corneas and 3 scleras, 2 whole rabbit eyes, and 3 human scleras. Besides, two rabbit eyes were studied in vivo prior to keratorefractive surgery as well as 10 and 21 days following the surgery (LASIK).Results. There have been created novel experimental installations enabling in vitro evaluation of frequency dependence of corneal and scleral transmittance coefficients and reflectance coefficients on water percentage in the THz range. Decrease in corneal water content by 1% was found to lead to reliably established decrease in the reflected signal by 13%. The reflectance spectrum of the whole rabbit eye was measured in the range of 0.13–0.32 THz. The study revealed the differences between the indices of rabbit cornea and sclera, as well as rabbit and human sclera. There was developed a laboratory model of the installation for in vivo evaluation of corneal and scleral hydration using THz radiation.Conclusion. The preliminary findings show that the proposed technique based on the use of continuous THz radiation can be employed to create a device for noninvasive control of corneal and scleral hydration.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1315
Permanent link to this record
 

 
Author Iomdina, E. N.; Seliverstov, S. V.; Teplyakova, K. O.; Jani, E. V.; Pozdniakova, V. V.; Polyakova, O. N.; Goltsman, G. N.
Title (up) Terahertz scanning of the rabbit cornea with experimental UVB-induced damage: in vivo assessment of hydration and its verification Type Journal Article
Year 2021 Publication J. Biomed. Opt. Abbreviated Journal J. Biomed. Opt.
Volume 26 Issue 4 Pages
Keywords medicine; scheimpflug imaging; UVB; confocal microscopy; cornea; optical coherent tomography; rabbit eyes; terahertz radiation
Abstract SIGNIFICANCE: Water content plays a vital role in the normally functioning visual system; even a minor disruption in the water balance may be harmful. Today, no direct method exists for corneal hydration assessment, while it could be instrumental in early diagnosis and control of a variety of eye diseases. The use of terahertz (THz) radiation, which is highly sensitive to water content, appears to be very promising. AIM: To find out how THz scanning parameters of corneal tissue measured by an experimental setup, specially developed for in vivo contactless estimations of corneal reflectivity coefficient (RC), are related to pathological changes in the cornea caused by B-band ultraviolet (UVB) exposure. APPROACH: The setup was tested on rabbit eyes in vivo. Prior to the course of UVB irradiation and 1, 5, and 30 days after it, a series of examinations of the corneal state was made. At the same time points, corneal hydration was assessed by measuring RC. RESULTS: The obtained data confirmed the negative impact of UVB irradiation course on the intensity of tear production and on the corneal thickness and optical parameters. A significant (1.8 times) increase in RC on the 5th day after the irradiation course, followed by a slight decrease on the 30th day after it was revealed. The RC increase measured 5 days after the UVB irradiation course generally corresponded to the increase (by a factor of 1.3) of tear production. RC increase occurred with the corneal edema, which was manifested by corneal thickening (by 18.2% in the middle area and 17.6% in corneal periphery) and an increased volume of corneal tissue (by 17.6%). CONCLUSIONS: Our results demonstrate that the proposed approach can be used for in vivo contactless estimation of the reflectivity of rabbit cornea in the THz range and, thereby, of cornea hydration.
Address National Research University Higher School of Economics, Moscow Institute of Electronics and Mathema, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1083-3668 ISBN Medium
Area Expedition Conference
Notes PMID:33834684; PMCID:PMC8027227 Approved no
Call Number Serial 1258
Permanent link to this record
 

 
Author Gayduchenko, I. A.; Moskotin, M. V.; Matyushkin, Y. E.; Rybin, M. G.; Obraztsova, E. D.; Ryzhii, V. I.; Goltsman, G. N.; Fedorov, G. E.
Title (up) The detection of sub-terahertz radiation using graphene-layer and graphene-nanoribbon FETs with asymmetric contacts Type Conference Article
Year 2018 Publication Materials Today: Proc. Abbreviated Journal Materials Today: Proc.
Volume 5 Issue 13 Pages 27301-27306
Keywords graphene nanoribbons, graphene-nanoribbon, GNR FET, field effect transistor
Abstract We report on the detection of sub-terahertz radiation using single layer graphene and graphene-nanoribbon FETs with asymmetric contacts (one is the Schottky contact and one – the Ohmic contact). We found that cutting graphene into ribbons a hundred nanometers wide leads to a decrease of the response to sub-THz radiation. We show that suppression of the response in the graphene nanoribbons devices can be explained by unusual properties of the Schottky barrier on graphene-vanadium interface.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2214-7853 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1316
Permanent link to this record
 

 
Author Kardakova, A.; Finkel, M.; Morozov, D.; Kovalyuk, V.; An, P.; Dunscombe, C.; Tarkhov, M.; Mauskopf, P.; Klapwijk, T.M.; Goltsman, G.
Title (up) The electron-phonon relaxation time in thin superconducting titanium nitride films Type Journal Article
Year 2013 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 103 Issue 25 Pages 252602 (1 to 4)
Keywords disordered TiN films, electron-phonon relaxation time
Abstract We report on the direct measurement of the electron-phonon relaxation time, τeph, in disordered TiN films. Measured values of τeph are from 5.5 ns to 88 ns in the 4.2 to 1.7 K temperature range and consistent with a T−3 temperature dependence. The electronic density of states at the Fermi level N0 is estimated from measured material parameters. The presented results confirm that thin TiN films are promising candidate-materials for ultrasensitive superconducting detectors.

The work was supported by the Ministry of Education and Science of the Russian Federation, Contract No. 14.B25.31.0007 and by the RFBR Grant No. 13-02-91159.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 941
Permanent link to this record
 

 
Author Smirnov, K.; Vachtomin, Y.; Divochiy, A.; Antipov, A.; Goltsman, G.
Title (up) The limitation of noise equivalent power by background radiation for infrared superconducting single photon detectors coupled to standard single mode optical fibers Type Journal Article
Year 2015 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.
Volume Issue 5 Pages
Keywords NbN SSPD
Abstract We investigated the minimum level of the dark count rates and noise equivalent power of superconducting single photon detectors coupled to standard single mode optical fibers. We found that background radiation limits the minimum level of the dark count rates. We also proposed the effective method for reducing background radiation out of the required spectral range of the detector. Measured noise equivalent power of detector reaches 8.9×10-19 W×Hz1/2 at a wavelength of 1.55 μm and quantum efficiency 35%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 14 pages Approved no
Call Number Serial 1813
Permanent link to this record