|   | 
Details
   web
Records
Author Kerman, A. J.; Dauler, E. A.; Yang, J. K. W.; Rosfjord, K. M.; Anant, V.; Berggren, K. K.; Gol’tsman, G. N.; Voronov, B. M.
Title (up) Constriction-limited detection efficiency of superconducting nanowire single-photon detectors Type Journal Article
Year 2007 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.
Volume 90 Issue 10 Pages 101110 (1 to 3)
Keywords SSPD, SNSPD
Abstract We investigate the source of the large variations in the observed detection efficiencies of superconducting nanowire single-photon detectors between many nominally identical devices. Through both electrical and optical measurements, we infer that these variations arise from “constrictions:” highly localized regions of the nanowires where the effective cross-sectional area for superconducting current is reduced. These constrictions limit the bias-current density to well below its critical value over the remainder of the wire, and thus prevent the detection efficiency from reaching the high values that occur in these devices when they are biased near the critical current density.

This work is sponsored by the United States Air Force under Contract No. FA8721-05-C-0002.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1433
Permanent link to this record
 

 
Author Elezov, M.; Ozhegov, R.; Goltsman, G.; Makarov, V.
Title (up) Countermeasure against bright-light attack on superconducting nanowire single-photon detector in quantum key distribution Type Journal Article
Year 2019 Publication Opt. Express Abbreviated Journal Opt. Express
Volume 27 Issue 21 Pages 30979-30988
Keywords SSPD, SNSPD
Abstract We present an active anti-latching system for superconducting nanowire single-photon detectors. We experimentally test it against a bright-light attack, previously used to compromise security of quantum key distribution. Although our system detects continuous blinding, the detector is shown to be partially blindable and controllable by specially tailored sequences of bright pulses. Improvements to the countermeasure are suggested.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1094-4087 ISBN Medium
Area Expedition Conference
Notes PMID:31684339 Approved no
Call Number Serial 1275
Permanent link to this record
 

 
Author Elezov, M. S.; Ozhegov, R. V.; Kurochkin, Y. V.; Goltsman, G. N.; Makarov, V. S.; Samartsev, V. V.; Vinogradov, E. A.; Naumov, A. V.; Karimullin, K. R.
Title (up) Countermeasures against blinding attack on superconducting nanowire detectors for QKD Type Conference Article
Year 2015 Publication EPJ Web Conf. Abbreviated Journal EPJ Web Conf.
Volume 103 Issue Pages 10002 (1 to 2)
Keywords SSPD, SNSPD, QKD
Abstract Nowadays, the superconducting single-photon detectors (SSPDs) are used in Quantum Key Distribution (QKD) instead of single-photon avalanche photodiodes. Recently bright-light control of the SSPD has been demonstrated. This attack employed a “backdoor” in the detector biasing technique. We developed the autoreset system which returns the SSPD to superconducting state when it is latched. We investigate latched state of the SSPD and define limit conditions for effective blinding attack. Peculiarity of the blinding attack is a long nonsingle photon response of the SSPD. It is much longer than usual single photon response. Besides, we need follow up response duration of the SSPD. These countermeasures allow us to prevent blind attack on SSPDs for Quantum Key Distribution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2100-014X ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1352
Permanent link to this record
 

 
Author Fiore, A.; Marsili, F.; Bitauld, D.; Gaggero, A.; Leoni, R.; Mattioli, F.; Divochiy, A.; Korneev, A.; Seleznev, V.; Kaurova, N.; Minaeva, O.; Gol’tsman, G.
Title (up) Counting photons using a nanonetwork of superconducting wires Type Conference Article
Year 2009 Publication Nano-Net Abbreviated Journal
Volume Issue Pages 120-122
Keywords SSPD, SNSPD
Abstract We show how the parallel connection of photo-sensitive superconducting nanowires can be used to count the number of photons in an optical pulse, down to the single-photon level. Using this principle we demonstrate photon-number resolving detectors with unprecedented sensitivity and speed at telecommunication wavelengths.
Address
Corporate Author Thesis
Publisher Springer Berlin Heidelberg Place of Publication Berlin, Heidelberg Editor Cheng, M.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 978-3-642-02427-6 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number 10.1007/978-3-642-02427-6_20 Serial 1242
Permanent link to this record
 

 
Author Kitaygorsky, J.; Komissarov, I.; Jukna, A.; Pan, D.; Minaeva, O.; Kaurova, N.; Divochiy, A.; Korneev, A.; Tarkhov, M.; Voronov, B.; Milostnaya, I.; Gol'tsman, G.; Sobolewski, R.R.
Title (up) Dark counts in nanostructured nbn superconducting single-photon detectors and bridges Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 275-278
Keywords SSPD; SNSPD
Abstract We present our studies on dark counts, observed as transient voltage pulses, in current-biased NbN superconducting single-photon detectors (SSPDs), as well as in ultrathin (~4 nm), submicrometer-width (100 to 500 nm) NbN nanobridges. The duration of these spontaneous voltage pulses varied from 250 ps to 5 ns, depending on the device geometry, with the longest pulses observed in the large kinetic-inductance SSPD structures. Dark counts were measured while the devices were completely isolated (shielded by a metallic enclosure) from the outside world, in a temperature range between 1.5 and 6 K. Evidence shows that in our two-dimensional structures the dark counts are due to the depairing of vortex-antivortex pairs caused by the applied bias current. Our results shed some light on the vortex dynamics in 2D superconductors and, from the applied point of view, on intrinsic performance of nanostructured SSPDs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1248
Permanent link to this record
 

 
Author Zolotov, P. I.; Semenov, A. V.; Divochiy, A. V.; Goltsman, G. N.; Romanov, N. R.; Klapwijk, T. M.
Title (up) Dependence of photon detection efficiency on normal-state sheet resistance in marginally superconducting films of NbN Type Journal Article
Year 2021 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 31 Issue 5 Pages 1-5
Keywords NbN SSPD, SNSPD
Abstract We present an extensive set of data on nanowire-type superconducting single-photon detectors based on niobium-nitride (NbN) to establish the empirical correlation between performance and the normal-state resistance per square. We focus, in particular, on the bias current, compared to the expected depairing current, needed to achieve a near-unity detection efficiency for photon detection. The data are discussed within the context of a model in which the photon energy triggers the movement of vortices i.e. superconducting dissipation, followed by thermal runaway. Since the model is based on the non-equilibrium theory for conventional superconductors deviations may occur, because the efficient regime is found when NbN acts as a marginal superconductor in which long-range phase coherence is frustrated.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1222
Permanent link to this record
 

 
Author Korneeva, Yu. P.; Trifonov, A. V.; Vakhtomin, Yu. B.; Smirnov, K. V.
Title (up) Design of resonator for superconducting single-photon detector Type Journal Article
Year 2011 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.
Volume Issue 12 Pages
Keywords SSPD optical resonator, SNSPD
Abstract A resonator for superconducting single-photon detector is designed. Near 60% coupling with a radiation propagating from a dielectric substrate of optical fiber is demonstrated to be achieved for typical values of the detector’s film sheet resistance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 6 pages Approved no
Call Number Serial 1827
Permanent link to this record
 

 
Author Verevkin, A.; Zhang, J.; Sobolewski, Roman; Lipatov, A.; Okunev, O.; Chulkova, G.; Korneev, A.; Smirnov, K.; Gol'tsman, G. N.; Semenov, A.
Title (up) Detection efficiency of large-active-area NbN single-photon superconducting detectors in the ultraviolet to near-infrared range Type Journal Article
Year 2002 Publication Appl. Phys. Lett. Abbreviated Journal
Volume 80 Issue 25 Pages 4687-4689
Keywords NbN SSPD, SNSPD, QE
Abstract We report our studies on spectral sensitivity of meander-type, superconducting NbN thin-film single-photon detectors (SPDs), characterized by GHz counting rates of visible and near-infrared photons and negligible dark counts. Our SPDs exhibit experimentally determined quantum efficiencies ranging from ∼0.2% at the 1.55 μm wavelength to ∼70% at 0.4 μm. Spectral dependences of the detection efficiency (DE) at the 0.4 to 3.0-μm-wavelength range are presented. The exponential character of the DE dependence on wavelength, as well as its dependence versus bias current, is qualitatively explained in terms of superconducting fluctuations in our ultrathin, submicron-width superconducting stripes. The DE values of large-active-area NbN SPDs in the visible range are high enough for modern quantum communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 331
Permanent link to this record
 

 
Author Manova, N. N.; Simonov, N. O.; Korneeva, Y. P.; Korneev, A. A.
Title (up) Developing of NbN films for superconducting microstrip single-photon detector Type Conference Article
Year 2020 Publication J. Phys.: Conf. Ser. Abbreviated Journal J. Phys.: Conf. Ser.
Volume 1695 Issue Pages 012116 (1 to 5)
Keywords NbN SSPD, SNSPD, NbN films
Abstract We optimized NbN films on a Si substrate with a buffer SiO2 layer to produce superconducting microstrip single-photon detectors with saturated dependence of quantum efficiency (QE) versus normalized bias current. We varied thickness of films and observed the maximum QE saturation for device based on the thinner film with the lowest ratio RS300/RS20.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1742-6588 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1786
Permanent link to this record
 

 
Author Zolotov, P.; Vakhtomin, Yu.; Divochiy, A.; Morozov, P.; Seleznev, V.; Smirnov, K
Title (up) Development of fast and high-effective single-photon detector for spectrum range up to 2.3 μm Type Conference Article
Year 2017 Publication Proc. SPBOPEN Abbreviated Journal Proc. SPBOPEN
Volume Issue Pages 439-440
Keywords SSPD, SNSPD
Abstract We present the results of development and testing of the single-photon-counting system operating in the wide spectrum rane up to 2.3 mcm. We managed to increase system detection efficiency up to 60% in the range of 1.7-2.3 mcm optimisation of the fabrication methods of superconducting single-photon detectors and application of the single-mode fiber with enlarged core diameter.
Address St. Petersburg, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1255
Permanent link to this record