|   | 
Details
   web
Records
Author Koshelets, V. P.; Dmitriev, P. N.; Ermakov, A. B.; Filippenko, L. V.; Sobolev, A. S.; Torgashin, M. Yu.; Borisov, V. B.
Title (down) Superconducting flux-flow oscillators for THz integrated receiver Type Abstract
Year 2005 Publication Presented at the second Franco-Russian Seminar on Nanotechnologies Abbreviated Journal
Volume Issue Pages
Keywords SIR
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Lille, France Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 521
Permanent link to this record
 

 
Author Nagatsuma, T.; Hirata, A.; Sato, Y.; Yamaguchi, R.; Takahashi, H.; Kosugi, T.; Tokumitsu, M.; Sugahara, H.; Furuta, T.; Ito, H.
Title (down) Sub-Terahertz Wireless Communications Technologies Type Conference Article
Year 2005 Publication Proc. 18th International Conference on Applied Electromagnetics and Communications (ICECom 2005) Abbreviated Journal
Volume Issue Pages 1-4
Keywords subterahartz terahertz THz communications
Abstract This paper presents a 10-Gb/s wireless link system that uses a 120-GHz-band sub-terahertz electro-magnetic waves. In the transmitter, photonic techniques are used for generation, modulation, and emission of the sub-THz signals, while the receiver is composed of all-electronic devices using InP-HEMTs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 593
Permanent link to this record
 

 
Author
Title (down) Single aperture far-infrared observatory Type
Year 2005 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ safir_proj Serial 379
Permanent link to this record
 

 
Author Mygind, J.; Samuelsen, M. R.; Koshelets, V. P.; Sobolev, A. S.
Title (down) Simple theory for the spectral. linewidth of the mm-wave Josephson flux flow oscillator Type Abstract
Year 2005 Publication Pi-shift Workshop “Physics of superconducting phase-shift devices” Abbreviated Journal
Volume Issue Pages 22-22
Keywords SIR
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Ischia, Italy Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 520
Permanent link to this record
 

 
Author Okunev, O.; Chulkova, G.; Milostnaya, I.; Antipov, A.; Smirnov, K.; Morozov, D.; Korneev, A.; Voronov, B.; Gol’tsman, G.; Stysz, W.; Wegrzecki, M.; Bar, J.; Grabiec, P.; Gorska, M.; Pearlman, A.; Cross, A.; Kitaygorsky, J.; Sobolewski, R.
Title (down) Registration of infrared single photons by a two-channel receiver based on fiber-coupled superconducting single-photon detectors Type Conference Article
Year 2005 Publication Proc. 2-nd CAOL Abbreviated Journal Proc. 2-nd CAOL
Volume 2 Issue Pages 282-285
Keywords NbN SSPD, SNSPD
Abstract Single-photon detectors (SPDs) are the foundation of all quantum communications (QC) protocols. Among different classes of SPDs currently studied, NbN superconducting SPDs (SSPDs) are established as the best devices for ultrafast counting of single photons in the infrared (IR) wavelength range. The SSPDs are nanostructured, 100 /spl mu/m/sup 2/ in total area, superconducting meanders, patterned by electron lithography in ultra-thin NbN films. Their operation has been explained within a phenomenological hot-electron photoresponse model. We present the design and performance of a novel, two-channel SPD receiver, based on two fiber-coupled NbN SSPDs. The receivers have been developed for fiber-based QC systems, operational at 1.3 /spl mu/m and 1.55 /spl mu/m telecommunication wavelengths. They operate in the temperature range from 4.2 K to 2 K, in which the NbN SSPDs exhibit their best performance. The receiver unit has been designed as a cryostat insert, placed inside a standard liquid-helium storage dewar. The input of the receiver consists of a pair of single-mode optical fibers, equipped with the standard FC connectors and kept at room temperature. Coupling between the SSPD and the fiber is achieved using a specially designed, precise micromechanical holder that places the fiber directly on top of the SSPD nanostructure. Our receivers achieve the quantum efficiency of up to 7% for near-IR photons, with the coupling efficiency of about 30%. The response time was measured to be <300 ps and it was limited by our read-out electronics. The jitter of fiber-coupled SSPDs is <35 ps and their dark-count rate is below 1 s/sup -1/. The presented performance parameters show that our single-photon receivers are fully applicable for quantum-correlation-type QC systems, including practical quantum cryptography.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Second International Conference on Advanced Optoelectronics and Lasers
Notes Approved no
Call Number Serial 1462
Permanent link to this record