|   | 
Details
   web
Records
Author Semenov, Alexei; Richter, Heiko; Smirnov, Konstantin; Voronov, Boris; Gol'tsman, Gregory; Hübers, Heinz-Wilhelm
Title (up) The development of terahertz superconducting hot-electron bolometric mixers Type Journal Article
Year 2004 Publication Supercond. Sci. Technol. Abbreviated Journal Supercond. Sci. Technol.
Volume 17 Issue 5 Pages 436-439
Keywords NbN HEB mixers
Abstract We present recent advances in the development of NbN hot-electron bolometric (HEB) mixers for flying terahertz heterodyne receivers. Three important issues have been addressed: the quality of the source NbN films, the effect of the bolometer size on the spectral properties of different planar feed antennas, and the local oscillator (LO) power required for optimal operation of the mixer. Studies of the NbN films with an atomic force microscope indicated a surface structure that may affect the performance of the smallest mixers. Measured spectral gain and noise temperature suggest that at frequencies above 2.5 THz the spiral feed provides better overall performance than the double-slot feed. Direct measurements of the optimal LO power support earlier estimates made in the framework of the uniform mixer model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 357
Permanent link to this record
 

 
Author Vakhtomin, Y. B.; Finkel, M. I.; Antipov, S. V.; Smirnov, K. V.; Kaurova, N. S.; Drakinskii, V. N.; Voronov, B. M.; Gol’tsman, G. N.
Title (up) The gain bandwidth of mixers based on the electron heating effect in an ultrathin NbN film on a Si substrate with a buffer MgO layer Type Journal Article
Year 2003 Publication J. of communications technol. & electronics Abbreviated Journal J. of communications technol. & electronics
Volume 48 Issue 6 Pages 671-675
Keywords NbN HEB mixers
Abstract Measurements of the intermediate frequency band 900 GHz of mixers based on the electron heating effect (EHE) in 2-nm- and 3.5-nm-thick superconducting NbN films sputtered on MgO and Si substrates with buffer MgO layers are presented. A 2-nm-thick superconducting NbN film with a critical temperature of 9.2 K has been obtained for the first time using a buffer MgO layer.
Address
Corporate Author Thesis
Publisher MAIK Nauka/Interperiodica, Birmingham, AL Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1064-2269 ISBN Medium
Area Expedition Conference
Notes https://elibrary.ru/item.asp?id=17302119 (Полоса преобразования смесителей на эффекте разогрева электронов в ультратонких пленках NbN на подложках из Si с подслоем MgO) Approved no
Call Number Vakhtomin2003 Serial 1522
Permanent link to this record
 

 
Author Smirnov, K.; Vachtomin, Y.; Divochiy, A.; Antipov, A.; Goltsman, G.
Title (up) The limitation of noise equivalent power by background radiation for infrared superconducting single photon detectors coupled to standard single mode optical fibers Type Journal Article
Year 2015 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.
Volume Issue 5 Pages
Keywords NbN SSPD
Abstract We investigated the minimum level of the dark count rates and noise equivalent power of superconducting single photon detectors coupled to standard single mode optical fibers. We found that background radiation limits the minimum level of the dark count rates. We also proposed the effective method for reducing background radiation out of the required spectral range of the detector. Measured noise equivalent power of detector reaches 8.9×10-19 W×Hz1/2 at a wavelength of 1.55 μm and quantum efficiency 35%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes 14 pages Approved no
Call Number Serial 1813
Permanent link to this record
 

 
Author Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G.
Title (up) The sensitivity and IF bandwidth of waveguide NbN hot electron bolometer mixers on MgO buffer layers over crystalline quartz Type Conference Article
Year 2002 Publication Proc. 13th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 13th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 65-72
Keywords waveguide NbN HEB mixers
Abstract We have developed and characterized waveguide phonon-cooled NbN Hot Electron Bolometer (FMB) mixers fabricated from a 3-4 nm thick NbN film deposited on a 200nm thick MgO buffer layer over crystalline quartz. Double side band receiver noise temperatures of 900-1050 K at 1.035 THz, and 1300-1400 K at 1.26 THz have been measured at an intermediate frequency of 1.5 GHz. The intermediate frequency bandwidth, measured at 0.8 THz LO frequency, is 3.2 GHz at the optimal bias point for low noise receiver operation.
Address
Corporate Author Thesis
Publisher Place of Publication Cambridge, MA, USA Editor Harvard university
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 326
Permanent link to this record
 

 
Author Baeva, E. M.; Sidorova, M. V.; Korneev, A. A.; Smirnov, K. V.; Divochy, A. V.; Morozov, P. V.; Zolotov, P. I.; Vakhtomin, Y. B.; Semenov, A. V.; Klapwijk, T. M.; Khrapai, V. S.; Goltsman, G. N.
Title (up) Thermal properties of NbN single-photon detectors Type Journal Article
Year 2018 Publication Phys. Rev. Applied Abbreviated Journal Phys. Rev. Applied
Volume 10 Issue 6 Pages 064063 (1 to 8)
Keywords NbN SSPD, SNSPD
Abstract We investigate thermal properties of a NbN single-photon detector capable of unit internal detection efficiency. Using an independent calibration of the coupling losses, we determine the absolute optical power absorbed by the NbN film and, via resistive superconductor thermometry, the temperature dependence of the thermal resistance Z(T) of the NbN film. In principle, this approach permits simultaneous measurement of the electron-phonon and phonon-escape contributions to the energy relaxation, which in our case is ambiguous because of the similar temperature dependencies. We analyze Z(T) with a two-temperature model and impose an upper bound on the ratio of electron and phonon heat capacities in NbN, which is surprisingly close to a recent theoretical lower bound for the same quantity in similar devices.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2331-7019 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1226
Permanent link to this record