|   | 
Details
   web
Records
Author Pentin, I.; Vakhtomin, Y.; Seleznev, V.; Smirnov, K.
Title (down) Hot electron energy relaxation time in vanadium nitride superconducting film structures under THz and IR radiation Type Journal Article
Year 2020 Publication Sci. Rep. Abbreviated Journal Sci. Rep.
Volume 10 Issue 1 Pages 16819
Keywords VN HEB
Abstract The paper presents the experimental results of studying the dynamics of electron energy relaxation in structures made of thin (d approximately 6 nm) disordered superconducting vanadium nitride (VN) films converted to a resistive state by high-frequency radiation and transport current. Under conditions of quasi-equilibrium superconductivity and temperature range close to critical (~ Tc), a direct measurement of the energy relaxation time of electrons by the beats method arising from two monochromatic sources with close frequencies radiation in sub-THz region (omega approximately 0.140 THz) and sources in the IR region (omega approximately 193 THz) was conducted. The measured time of energy relaxation of electrons in the studied VN structures upon heating of THz and IR radiation completely coincided and amounted to (2.6-2.7) ns. The studied response of VN structures to IR (omega approximately 193 THz) picosecond laser pulses also allowed us to estimate the energy relaxation time in VN structures, which was ~ 2.8 ns and is in good agreement with the result obtained by the mixing method. Also, we present the experimentally measured volt-watt responsivity (S~) within the frequency range omega approximately (0.3-6) THz VN HEB detector. The estimated values of noise equivalent power (NEP) for VN HEB and its minimum energy level (deltaE) reached NEP@1MHz approximately 6.3 x 10(-14) W/ radicalHz and deltaE approximately 8.1 x 10(-18) J, respectively.
Address National Research University Higher School of Economics, 20 Myasnitskaya Str., Moscow, 101000, Russia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:33033360; PMCID:PMC7546726 Approved no
Call Number Serial 1797
Permanent link to this record
 

 
Author Moshkova, M. A.; Morozov, P. V.; Antipov, A. V.; Vakhtomin, Y. B.; Smirnov, K. V.
Title (down) High-efficiency multi-element superconducting single-photon detector Type Conference Article
Year 2021 Publication Proc. SPIE Abbreviated Journal Proc. SPIE
Volume 11771 Issue Pages 2-8
Keywords PNR SSPD, large active area, detection efficiency
Abstract We present the result of the creation and investigation of the multi-element superconducting single photon detectors, which can recognize the number of photons (up to six) in a short pulse of the radiation at telecommunication wavelengths range. The best receivers coupled with single-mode fiber have the system quantum efficiency of ⁓85%. The receivers have a 100 ps time resolution and a few nanoseconds dead time that allows them to operate at megahertz counting rate. Implementation of the multi-element architecture for creation of the superconducting single photon detectors with increased sensitive area allows to create the high efficiency receivers coupled with multi-mode fibers and with preserving of the all advantages of superconducting photon counters.
Address
Corporate Author Thesis
Publisher SPIE Place of Publication Editor Prochazka, I.; Štefaňák, M.; Sobolewski, R.; Gábris, A.
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference Quantum Optics and Photon Counting
Notes Approved no
Call Number Serial 1795
Permanent link to this record
 

 
Author Kuznetsov, K. A.; Kornienko, V. V.; Vakhtomin, Y. B.; Pentin, I. V.; Smirnov, K. V.; Kitaeva, G. K.
Title (down) Generation and detection of optical-terahertz biphotons via spontaneous parametric downconversion Type Conference Article
Year 2018 Publication Proc. ICLO Abbreviated Journal Proc. ICLO
Volume Issue Pages 303
Keywords NbN HEB applications
Abstract We study spontaneous parametric downconversion (SPDC) in the strongly non-degenerate regime when the idler wave hits the terahertz range. By using the hot-electron bolometer, for the first time the SPDC-generated idler-wave photons were directly detected in the terahertz frequency range. Spectrum of corresponding signal photons was measured using standard technique by the CCD camera. Possible applications of correlated optical-terahertz biphotons are discussed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference International Conference Laser Optics
Notes Approved no
Call Number Serial 1806
Permanent link to this record
 

 
Author Neroev, V. V.; Iomdina, E. N.; Khandzhyan, A. T.; Khodzhabekyan, N. V.; Sengaeva, M. D.; Ivanova, A. V.; Seliverstov, S. V.; Teplyakova, K. O.; Goltsman, G. N.
Title (down) Experimental study of the effect of corneal hydration and its biomechanical properties on the results of photorefractive keratectomy Type Journal Article
Year 2021 Publication Vestn. Oftalmol. Abbreviated Journal Vestn. Oftalmol.
Volume 137 Issue 3 Pages 68-75
Keywords THz scanning, cornea, photorefractive keratectomy, medicine
Abstract Water content in the cornea may affect the outcome of its excimer laser ablation, especially in presbyopic patients with myopic refraction. This hypothesis can be tested by scanning the cornea in the terahertz (THz) range to determine its hydration level.

Purpose: To study the effect of hydration of the cornea determined by non-contact THz scanning and its biomechanical parameters on the results of photorefractive keratectomy (PRK) in an experiment.

Material and methods: PRK was performed using the Nidek EC-5000 QUEST excimer laser on 8 rabbit eyes. Corneal hydration was evaluated by determining the reflection coefficient (RC) in the THz electromagnetic radiation range before PRK, after 3-5 days, and after 1, 2, 3, and 4 months. Clinical examination included autorefractometry, assessment of corneal thickness and other anatomical and optical parameters of the anterior eye segment (Galilei G6, Ziemer Ophthalmic Systems AG 6.0.2, Switzerland), measurement of corneal hysteresis (CH) and corneal resistance factor (CRF) using the Ocular Response Analyzer (ORA; Reichert, USA), as well as tear production (Schirmer test).

Results: The initial water content in the cornea has a significant effect on the thickness of the removed layer, i.e. on the PRK effect, with correlation coefficient of Rs= -0.976 (p<0.01). The correlation between CH and the ablation depth is less pronounced (Rs=0.643), and CRF had no correlation with it (Rs= -0.089). Biomechanical indicators of the cornea depend on its hydration: changes in CH and CRF after excimer laser ablation qualitatively coincide with changes in RC, the correlation coefficient between RC and the initial value of CH is R= -0.619 (moderate negative correlation).

Conclusion: THz scanning is an effective non-contact technology for monitoring corneal hydration level. The mismatch of the hypoeffect of keratorefractive excimer laser intervention planned for patients with presbyopia with the actual outcome can be caused by individual decrease in the initial water content in the cornea.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1794
Permanent link to this record
 

 
Author Shcheslavskiy, V.; Morozov, P.; Divochiy, A.; Vakhtomin, Y.; Smirnov, K.; Becker, W.
Title (down) Erratum: “Ultrafast time measurements by time-correlated single photon counting coupled with superconducting single photon detector” [Rev. Sci. Instrum. 87, 053117 (2016)] Type Miscellaneous
Year 2016 Publication Rev. Sci. Instrum. Abbreviated Journal Rev. Sci. Instrum.
Volume 87 Issue 6 Pages 069901
Keywords SSPD, SNSPD, TCSPC, jitter
Abstract In the original paper1the Ref. 10 should be M. Sanzaro, N. Calandri, A. Ruggeri, C. Scarcella, G. Boso, M. Buttafava, and A. Tosi, Proc. SPIE9370, 93701T (2015).
Address Becker & Hickl GmbH, Nahmitzer Damm 30, Berlin 12277, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-6748 ISBN Medium
Area Expedition Conference
Notes PMID:27370512 Approved no
Call Number Serial 1810
Permanent link to this record