toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Vercruyssen, N.; Verhagen, T. G. A.; Flokstra, M. G.; Pekola, J. P.; Klapwijk, T. M. openurl 
  Title (down) Evanescent states and nonequilibrium in driven superconducting nanowires Type Journal Article
  Year 2012 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 85 Issue Pages 224503(1-10)  
  Keywords Al HEB, Al superconducting nanowire, global state, bimodal state, quasiclassical kinetic equations, Usadel equation  
  Abstract We study the nonlinear response of current transport in a superconducting diffusive nanowire between normal reservoirs. We demonstrate theoretically and experimentally the existence of two different superconducting states appearing when the wire is driven out of equilibrium by an applied bias, called the global and bimodal superconducting states. The different states are identified by using two-probe measurements of the wire, and measurements of the local density of states with tunneling probes. The analysis is performed within the framework of the quasiclassical kinetic equations for diffusive superconductors.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 898  
Permanent link to this record
 

 
Author Vystavkin, A. N. url  openurl
  Title (down) Estimation of noise equivalent power and design analysis of an andreev reflection hot-electron microbolometer for submillimeter radioastronomy Type Journal Article
  Year 1999 Publication Rus. J. Radio Electron. Abbreviated Journal Rus. J. Radio Electron.  
  Volume Issue 10 Pages  
  Keywords HEB, detector, bolometer  
  Abstract Results of theoretical estimations and measurements of characteristics of an Andreev reflection hot-electron microbolometer for submillimeter radioastronomy made by different researchers are reviewed and analysed. Peculiarities and characteristics of the microbolometers using two types of microthermometer for measurement of the electron temperature increment under influence of the radiation: the SIN-junction and the transition-edge sensor (TES) with electrothermal feedback – are compared. Advantages of the microbolometer with the second type of the microthermometer when the TES is used simultaneously as the absorber of radiation are shown. Methods of achievement of the best noise equivalent power of the microbolometer in such version as well as methods of the matching the microbolometer with the incident radiation flow using planar antennas and with the channel of output signal measurement using a SQUID-picoammeter are considered.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 496  
Permanent link to this record
 

 
Author Klapwijk, T. M.; Semenov, A. V. url  doi
openurl 
  Title (down) Engineering physics of superconducting hot-electron bolometer mixers Type Journal Article
  Year 2017 Publication IEEE Trans. THz Sci. Technol. Abbreviated Journal IEEE Trans. THz Sci. Technol.  
  Volume 7 Issue 6 Pages 627-648  
  Keywords HEB mixers  
  Abstract Superconducting hot-electron bolometers are presently the best performing mixing devices for the frequency range beyond 1.2 THz, where good-quality superconductor-insulator-superconductor devices do not exist. Their physical appearance is very simple: an antenna consisting of a normal metal, sometimes a normal-metal-superconductor bilayer, connected to a thin film of a narrow short superconductor with a high resistivity in the normal state. The device is brought into an optimal operating regime by applying a dc current and a certain amount of local-oscillator power. Despite this technological simplicity, its operation has found to be controlled by many different aspects of superconductivity, all occurring simultaneously. A core ingredient is the understanding that there are two sources of resistance in a superconductor: a charge-conversion resistance occurring at a normal-metal-superconductor interface and a resistance due to time-dependent changes of the superconducting phase. The latter is responsible for the actual mixing process in a nonuniform superconducting environment set up by the bias conditions and the geometry. The present understanding indicates that further improvement needs to be found in the use of other materials with a faster energy relaxation rate. Meanwhile, several empirical parameters have become physically meaningful indicators of the devices, which will facilitate the technological developments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2156-342X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1292  
Permanent link to this record
 

 
Author Huard, B.; Pothier, H.; Esteve, D.; Nagaev, K. E. url  doi
openurl 
  Title (down) Electron heating in metallic resistors at sub-Kelvin temperature Type Journal Article
  Year 2007 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 76 Issue Pages 165426(1-9)  
  Keywords electron heating in resistor, HEB distributed model, HEB model, hot electrons  
  Abstract In the presence of Joule heating, the electronic temperature in a metallic resistor placed at sub-Kelvin temperatures can significantly exceed the phonon temperature. Electron cooling proceeds mainly through two processes: electronic diffusion to and from the connecting wires and electron-phonon coupling. The goal of this paper is to present a general solution of the problem in a form that can easily be used in practical situations. As an application, we compute two quantities that depend on the electronic temperature profile: the second and the third cumulant of the current noise at zero frequency, as a function of the voltage across the resistor. We also consider time-dependent heating, an issue relevant for experiments in which current pulses are used, for instance, in time-resolved calorimetry experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Recommended by Klapwijk as example for writing the article on the HEB model. Approved no  
  Call Number Serial 936  
Permanent link to this record
 

 
Author Sidorova, M.; Semenov, Alexej D.; Hübers, H.-W.; Ilin, K.; Siegel, M.; Charaev, I.; Moshkova, M.; Kaurova, N.; Goltsman, G. N.; Zhang, X.; Schilling, A. url  doi
openurl 
  Title (down) Electron energy relaxation in disordered superconducting NbN films Type Journal Article
  Year 2020 Publication Phys. Rev. B Abbreviated Journal Phys. Rev. B  
  Volume 102 Issue 5 Pages 054501 (1 to 15)  
  Keywords NbN SSPD, SNSPD, HEB, bandwidth, relaxation time  
  Abstract We report on the inelastic-scattering rate of electrons on phonons and relaxation of electron energy studied by means of magnetoconductance, and photoresponse, respectively, in a series of strongly disordered superconducting NbN films. The studied films with thicknesses in the range from 3 to 33 nm are characterized by different Ioffe-Regel parameters but an almost constant product qTl (qT is the wave vector of thermal phonons and l is the elastic mean free path of electrons). In the temperature range 14–30 K, the electron-phonon scattering rates obey temperature dependencies close to the power law 1/τe−ph∼Tn with the exponents n≈3.2–3.8. We found that in this temperature range τe−ph and n of studied films vary weakly with the thickness and square resistance. At 10 K electron-phonon scattering times are in the range 11.9–17.5 ps. The data extracted from magnetoconductance measurements were used to describe the experimental photoresponse with the two-temperature model. For thick films, the photoresponse is reasonably well described without fitting parameters, however, for thinner films, the fit requires a smaller heat capacity of phonons. We attribute this finding to the reduced density of phonon states in thin films at low temperatures. We also show that the estimated Debye temperature in the studied NbN films is noticeably smaller than in bulk material.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2469-9950 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1266  
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol’tsman, G. N.; Gousev, Y. P.; Elant’ev, A. I.; Semenov, A. D. url  doi
openurl 
  Title (down) Electromagnetic radiation mixer based on electron heating in resistive state of superconductive Nb and YBaCuO films Type Journal Article
  Year 1991 Publication IEEE Trans. Magn. Abbreviated Journal IEEE Trans. Magn.  
  Volume 27 Issue 2 Pages 1317-1320  
  Keywords YBCO, HTS, Nb HEB mixers  
  Abstract A theory of an electron-heating mixer which makes it possible to calculate all the characteristics of the device is developed. It is shown that positive conversion gain is possible for such a mixer in the millimeter to near-infrared wavelength range. The dynamic range and the optimum heterodyne power can be selected from a very wide interval by varying the mixing element volume. Measurements made for Nb within the frequency range of 120-750 GHz confirm the theory. The conversion loss obtained at T=1.6 K and normalized to the element reaches 0.3 dB in the intermediate frequency band of 40 MHz; the possible noise temperature is 50 K. The estimation of noise temperature and output band for YBaCuO at T=77 yields 200 K and more than 10 GHz, respectively.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1941-0069 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1681  
Permanent link to this record
 

 
Author Cherednichenko, S.; Kollberg, E.; Angelov, I.; Drakinskiy, V.; Berg, T.; Merkel, H. openurl 
  Title (down) Effect of the direct detection effect on the HEB receiver sensitivity calibration Type Conference Article
  Year 2005 Publication Proc. 16th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 235-239  
  Keywords HEB, mixer, direct detection effect  
  Abstract We analyze the scale of the HEB receiver sensitivity calibration error caused by the so called “direct detection effect”. The effect comes from changing of the HEB parameters when whey face the calibration loads of different temperatures. We found that for HIFI Band 6 mixers (Herschel Space Observatory) the noise temperature error is of the order of 8% for 300K/77K loads (lab receiver) and 2.5% for 100K/10K loads (in HIFI). Using different approach we also predict that with an isolator between the mixer and the low noise amplifiers the error can be much smaller.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Göteborg, Sweden Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 360  
Permanent link to this record
 

 
Author Ryabchun, S.; Tong, C.-yu E.; Blundell, R.; Kimberk, R.; Gol’tsman, G. url  doi
openurl 
  Title (down) Effect of microwave radiation on the stability of terahertz hot-electron bolometer mixers Type Conference Article
  Year 2006 Publication Proc. SPIE Abbreviated Journal Proc. SPIE  
  Volume 6373 Issue Pages 63730J (1 to 5)  
  Keywords NbN HEB mixers, hot-electron bolometer mixers, stability, Allan variance, LO power fluctuations  
  Abstract We report our studies of the effect of microwave radiation, with a frequency much lower than that corresponding to the energy gap of the superconductor, on the performance of the NbN hot-electron bolometer (HEB) mixer incorporated into a THz heterodyne receiver. It is shown that exposing the HEB mixer to microwave radiation does not result in a significant rise of the receiver noise temperature and degradation of the mixer conversion gain so long as the level of microwave power is small compared to the local oscillator drive. Hence the injection of a small, but controlled amount of microwave radiation enables active compensation of local oscillator power and coupling fluctuations which can significantly degrade the stability of HEB mixer receivers.  
  Address  
  Corporate Author Thesis  
  Publisher SPIE Place of Publication Editor Anwar, M.; DeMaria, A.J.; Shur, M.S.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference Terahertz Physics, Devices, and Systems  
  Notes Approved no  
  Call Number Serial 1441  
Permanent link to this record
 

 
Author Elant'ev, A. I.; Karasik, B. S. openurl 
  Title (down) Effect of high-frequency current on Nb superconductive film in resistive state Type Journal Article
  Year 1989 Publication Sov. J. Low Temp. Phys. Abbreviated Journal Sov. J. Low Temp. Phys.  
  Volume 15 Issue 7 Pages 379-383  
  Keywords Nb HEB  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 882  
Permanent link to this record
 

 
Author Baselmans, J. J. A.; Hajenius, M.; Gao, J. R.; Klapwijk, T. M.; de Korte, P. A. J.; Voronov, B.; Gol'tsman, G. doi  openurl
  Title (down) Doubling of sensitivity and bandwidth in phonon cooled hot electron bolometer mixers Type Journal Article
  Year 2004 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 84 Issue 11 Pages 1958-1960  
  Keywords NbN HEB mixers  
  Abstract We demonstrate that the performance of NbN lattice cooled hot electron bolometer mixers depends strongly on the interface quality between the bolometer and the contact structure. We show experimentally that both the receiver noise temperature and the gain bandwidth can be improved by more than a factor of 2 by cleaning the interface and adding an additional superconducting interlayer to the contact pad. Using this we obtain a double sideband receiver noise temperature TN,DSB=950 K

at 2.5 THz and 4.3 K, uncorrected for losses in the optics. At the same bias point, we obtain an IF gain bandwidth of 6 GHz.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 352  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: