|   | 
Details
   web
Records
Author Korneev, A.; Matvienko, V.; Minaeva, O.; Milostnaya, I.; Rubtsova, I.; Chulkova, G.; Smirnov, K.; Voronov, V.; Gol’tsman, G.; Slysz, W.; Pearlman, A.; Verevkin, A.; Sobolewski, R.
Title (down) Quantum efficiency and noise equivalent power of nanostructured, NbN, single-photon detectors in the wavelength range from visible to infrared Type Journal Article
Year 2005 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 15 Issue 2 Pages 571-574
Keywords NbN SSPD, SNSPD, QE, NEP
Abstract We present our studies on the quantum efficiency (QE) and the noise equivalent power (NEP) of the latest-generation, nanostructured, superconducting, single-photon detectors (SSPDs) in the wavelength range from 0.5 to 5.6 /spl mu/m, operated at temperatures in the 2.0- to 4.2-K range. Our detectors are designed as 4-nm-thick and 100-nm-wide NbN meander-shaped stripes, patterned by electron-beam lithography and cover a 10/spl times/10-/spl mu/m/sup 2/ active area. The best-achieved QE at 2.0 K for 1.55-/spl mu/m photons is 17%, and QE for 1.3-/spl mu/m infrared photons reaches its saturation value of /spl sim/30%. The SSPD NEP at 2.0 K is as low as 5/spl times/10/sup -21/ W/Hz/sup -1/2/. Our nanostructured SSPDs, operated at 2.0 K, significantly outperform their semiconducting counterparts, and, together with their GHz counting rate and picosecond timing jitter, they are devices-of-choice for practical quantum key distribution systems and free-space (even interplanetary) quantum optical communications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1558-2515 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1467
Permanent link to this record
 

 
Author Semenov, A.; Goltsman, G.; Korneev, A.
Title (down) Quantum detection by current carrying superconducting film Type Journal Article
Year 2001 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 351 Issue 4 Pages 349-356
Keywords quantum detection, phase slip centers, quasiparticle diffusion
Abstract We describe a novel quantum detection mechanism in the superconducting film carrying supercurrent. The mechanism incorporates growing normal domain and breaking of superconductivity by the bias current. A single photon absorbed in the film creates transient normal spot that causes redistribution of the current and, consequently, increase of the current density in superconducting areas. When the current density exceeds the critical value, the film switches into resistive state and generates the voltage pulse. Analysis shows that a submicron-wide film of conventional low temperature superconductor operated in liquid helium may detect single far-infrared photon. The amplitude and duration of the voltage pulse are in the millivolt and picosecond range, respectively. The quantitative model is presented that allows simulation of the detector utilizing this detection mechanism.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 507
Permanent link to this record
 

 
Author Rasulova, G. K.; Pentin, I. V.; Vakhtomin, Y. B.; Smirnov, K. V.; Khabibullin, R. A.; Klimov, E. A.; Klochkov, A. N.; Goltsman, G. N.
Title (down) Pulsed terahertz radiation from a double-barrier resonant tunneling diode biased into self-oscillation regime Type Journal Article
Year 2020 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 128 Issue 22 Pages 224303 (1 to 11)
Keywords HEB, resonant tunneling diode, RTD
Abstract The study of the bolometer response to terahertz (THz) radiation from a double-barrier resonant tunneling diode (RTD) biased into the negative differential conductivity region of the I–V characteristic revealed that the RTD emits two pulses in a period of intrinsic self-oscillations of current. The bolometer pulse repetition rate is a multiple of the fundamental frequency of the intrinsic self-oscillations of current. The bolometer pulses are detected at two critical points with a distance between them being half or one-third of a period of the current self-oscillations. An analysis of the current self-oscillations and the bolometer response has shown that the THz photon emission is excited when the tunneling electrons are trapped in (the first pulse) and then released from (the second pulse) miniband states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1262
Permanent link to this record
 

 
Author Polyakova, M.; Semenov, A. V.; Kovalyuk, V.; Ferrari, S.; Pernice, W. H. P.; Gol'tsman, G. N.
Title (down) Protocol of measuring hot-spot correlation length for SNSPDs with near-unity detection efficiency Type Journal Article
Year 2019 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 29 Issue 5 Pages 1-5
Keywords SSPD, waveguide-integrated SNSPD, hot-spot interaction length
Abstract We present a simple quantum detector tomography protocol, which allows, without ambiguities, to measure the two-spot detection efficiency and extract the hot-spot interaction length of superconducting nanowire single photon detectors (SNSPDs) with unity intrinsic detection efficiency. We identify a significant parasitic contribution to the measured two-spot efficiency, related to an effect of the bias circuit, and find a way to rule out this contribution during data post-processing and directly in the experiment. From the data analysis for waveguide-integrated SNSPD, we find signatures of the saturation of the two-spot efficiency and hot-spot interaction length of order of 100 nm.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1187
Permanent link to this record
 

 
Author Aksaev, E. E.; Gershenzon, E. M.; Gershenson, M. E.; Goltsman, G. N.; Semenov, A. D.; Sergeev, A. V.
Title (down) Prospects for using high-temperature superconductors to create electron bolometers Type Journal Article
Year 1989 Publication Pisma v Zhurnal Tekhnicheskoi Fiziki Abbreviated Journal Pisma v Zhurnal Tekhnicheskoi Fiziki
Volume 15 Issue 14 Pages 88-93
Keywords HTS HEB
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Russian Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0320-0116 ISBN Medium
Area Expedition Conference
Notes Перспективы применения высокотемпературных сверхпроводников для создания электронных болометров Approved no
Call Number Serial 1693
Permanent link to this record
 

 
Author Chen, J.; Kang, L.; Jin, B. B.; Xu, W. W.; Wu, P. H.; Zhang, W.; Jiang, L.; Li, N.; Shi, S. C.; Gol'tsman, G. N.
Title (down) Properties of terahertz superconducting hot electron bolometer mixers Type Journal Article
Year 2008 Publication Int. J. Terahertz Sci. Technol. Abbreviated Journal Int. J. Terahertz Sci. Technol.
Volume 1 Issue 1 Pages 37-41
Keywords NbN HEB mixers, noise temperature
Abstract A quasi-optical superconducting niobium nitride (NbN) hot electron bolometer (HEB) mixer has been fabricated and measured in the terahertz (THz) frequency range of 0.5~2.52 THz. A receiver noise temperature of 2000 K at 2.52 THz has been obtained for the mixer without corrections. Also, the effect of a Parylene C anti-reflection (AR) coating on the silicon (Si) lens has been studied.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1417
Permanent link to this record
 

 
Author Gershenzon, E. M.; Gol'tsman, G. N.; Gogidze, I. G.; Semenov, A. D.; Sergeev, A. V.
Title (down) Processes of electron-phonon interaction in thin YBaCuO films Type Journal Article
Year 1991 Publication Phys. C: Supercond. Abbreviated Journal Phys. C: Supercond.
Volume 185-189 Issue Pages 1371-1372
Keywords YBCO HTS detectors
Abstract The ultrafast voltage response of YBaCuO films to laser radiation is studied and compared with previously investigated quasiparicles response to radiation of submillimeter wavelength range. Voltage shift under the visible light radiation has two components. Picosecond response realized as suppression superconductivity by nonequilibrium excess quasiparticles, response time is determined by quasiparticles recombination rate. Nanosecond response is probably due to bolometric effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0921-4534 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1676
Permanent link to this record
 

 
Author Trifonov, A.; Tong, C.-Y. E.; Blundell, R.; Ryabchun, S.; Gol'tsman, G.
Title (down) Probing the stability of HEB mixers with microwave injection Type Journal Article
Year 2015 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 25 Issue 3 Pages 2300404 (1 to 4)
Keywords NbN HEB mixer, stability, Allan-variance
Abstract Using a microwave probe as a tool, we have performed experiments aimed at understanding the origin of the output-power fluctuations in hot-electron-bolometer (HEB) mixers. We use a probe frequency of 1.5 GHz. The microwave probe picks up impedance changes of the HEB, which are examined upon demodulation of the reflected wave outside the cryostat. This study shows that the HEB mixer operates in two different regimes under a terahertz pump. At a low pumping level, strong pulse modulation is observed, as the device switches between the superconducting state and the normal state at a rate of a few megahertz. When pumped much harder, to approximate the low-noise mixer operating point, residual modulation can still be observed, showing that the HEB mixer is intrinsically unstable even in the resistive state. Based on these observations, we introduced a low-frequency termination to the HEB mixer. By terminating the device in a 50-Ω resistor in the megahertz frequency range, we have been able to improve the output-power Allan time of our HEB receiver by a factor of four to about 10 s for a detection bandwidth of 15 MHz, with a corresponding gain fluctuation of about 0.035%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1355
Permanent link to this record
 

 
Author Beck, M.; Klammer, M.; Rousseau, I.; Gol’tsman, G. N.; Diamant, I.; Dagan, Y.; Demsar, J.
Title (down) Probing superconducting gap dynamics with THz pulses Type Conference Article
Year 2015 Publication CLEO Abbreviated Journal CLEO
Volume Issue Pages SM3H.3 (1 to 2)
Keywords superconducting gap; electric fields; femtosecond pulses; near infrared radiation; picosecond pulses; superconductors; thin films
Abstract We studied superconducting gap dynamics in a BCS superconductor NbN and electron doped cuprate superconductor PCCO following excitation with near-infrared (NIR) and narrow band THz pulses. Systematic studies on PCCO imply very selective electron-phonon coupling.
Address
Corporate Author Thesis
Publisher Optical Society of America Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1345
Permanent link to this record
 

 
Author Baeva, E.; Sidorova, M.; Korneev, A.; Goltsman, G.
Title (down) Precise measurement of the thermal conductivity of superconductor Type Conference Article
Year 2018 Publication Proc. AIP Conf. Abbreviated Journal Proc. AIP Conf.
Volume 1936 Issue 1 Pages 020003 (1 to 4)
Keywords NbN SSPD, SNSPD
Abstract Measuring the thermal properties such as the heat capacity provide information about intrinsic mechanisms operated inside. In general, the ratio between electron and phonon specific heat Ce/Cp shows how the absorbed energy shared between electron and phonon subsystems. In this work we make estimations for amplitude-modulated absorption of THz radiation technique for investigation of the ratio Ce/Cp in superconducting Niobium Nitride (NbN) at T = Tc. Our results indicates that experimentally the frequency of modulation has to be extra large to extract the quantity. We perform a new technique allowed to work at low frequency with accurately measurement of absorbed power.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number doi:10.1063/1.5025441 Serial 1311
Permanent link to this record