|   | 
Details
   web
Records
Author Mooij, J. E.; Dekker, P.
Title (down) Static properties of two- and three-dimensional superconducting constrictions Type Journal Article
Year 1978 Publication J. Low Temp. Phys. Abbreviated Journal J. Low Temp. Phys.
Volume 33 Issue 5/6 Pages 551-576
Keywords superconducting microbridges, superconducting strip, coherence length
Abstract Calculations have been performed on superconducting constrictions with hyperbolic geometry. Stationary Ginzburg-Landau equations are used, neglecting magneticfields. Emphasis is placed on the difference between two-and three -dimensional constrictions, which is related to the difference between uniform-thickness (UT) and variable-thickness (VT) superconducting microbridges. The width of the constriction w, normalized to the coherence length ξ is indicated by the parameter A (â‰<192> w/2ξ). It is found that small (A < 0.1), three-dimensional constrictions and VT bridges have a sinusoidal current-phase relation, linear temperature dependence of the critical current I c, and an I cR product (Ris the normal state resistance) equal to the Ambegaokar-Baratoff expression for Josephson junctions near T c. Two-dimensional constrictions behave as if they consist of an inner core with junction properties, in series with the films on both sides. The core consists of the region within a coherence length from the center of the structure. This size is temperature dependent. The core shows a sinusoidal current-phase relation and IcR according to Ambegaokar and Baratoff. For the whole constriction neither the phase difference nor R is finite. Two-dimensional constrictions have linear temperature dependence only when they are extremely narrow (A < 0.001). In two-dimensionalbridges the order parameter is depressed cover a distance of approximately the coherence length; in small three-dimensional constrictions this distance is approximately equal to the width. In narrow constrictions (and short microbridges) the current is not homogeneously distributedover the cross section. The effect has been investigated that occurs when in three-dimensional constrictions the width w is not much larger than l 0, the electron mean free path in the basic material. To this purpose a Ginzburg-Landau equation is derived from the Zaitsev boundary conditions which is valid for continuously changing material parameters. The critical current is decreased, but the IcR product remains constant.The results of the calculations are compared with experimental results for superconducting microbridges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Recommended by Klapwijk Approved no
Call Number Serial 926
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-Yu Edward; Blundell, Raymond; Gol'tsman, Gregory
Title (down) Stabilization scheme for hot-electron bolometer receivers using microwave radiation Type Journal Article
Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 19 Issue 1 Pages 14-19
Keywords HEB, mixer, Allan variance, stabilization, radiometer equation
Abstract We present the results of a stabilization scheme for terahertz receivers based on NbN hot-electron bolometer (HEB) mixers that uses microwave radiation with a frequency much lower than the gap frequency of NbN to compensate for mixer current fluctuations. A feedback control loop, which actively controls the power level of the injected microwave radiation, has successfully been implemented to stabilize the operating point of the HEB mixer. This allows us to increase the receiver Allan time to 10 s and also improve the temperature resolution of the receiver by about 30% in the total power mode of operation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 559
Permanent link to this record
 

 
Author Kooi, J. W.; Baselmans, J. J. A.; Baryshev, A.; Schieder, R.; Hajenius, M.; Gao, J.R.; Klapwijk, T. M.; Voronov, B.; Gol’tsman, G.
Title (down) Stability of heterodyne terahertz receivers Type Journal Article
Year 2006 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 100 Issue 6 Pages 064904 (1 to 9)
Keywords NbN HEB mixers
Abstract In this paper we discuss the stability of heterodyne terahertz receivers based on small volume NbN phonon cooled hot electron bolometers (HEBs). The stability of these receivers can be broken down in two parts: the intrinsic stability of the HEB mixer and the stability of the local oscillator (LO) signal injection scheme. Measurements show that the HEB mixer stability is limited by gain fluctuations with a 1∕f spectral distribution. In a 60MHz noise bandwidth this results in an Allan variance stability time of ∼0.3s. Measurement of the spectroscopic Allan variance between two intermediate frequency (IF) channels results in a much longer Allan variance stability time, i.e., 3s between a 2.5 and a 4.7GHz channel, and even longer for more closely spaced channels. This implies that the HEB mixer 1∕f noise is strongly correlated across the IF band and that the correlation gets stronger the closer the IF channels are spaced. In the second part of the paper we discuss atmospheric and mechanical system stability requirements on the LO-mixer cavity path length. We calculate the mixer output noise fluctuations as a result of small perturbations of the LO-mixer standing wave, and find very stringent mechanical and atmospheric tolerance requirements for receivers operating at terahertz frequencies.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1444
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-yu Edward; Blundell, Raymond; Kimberk, Robert; Gol’tsman, Gregory
Title (down) Stabilisation of a terahertz hot-electron bolometer mixer with microwave feedback control Type Conference Article
Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 18th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 193-198
Keywords waveguide NbN HEB mixers, Allan variance, stability
Abstract We report on implementation of microwave feedback control loop to stabilise the performance of an HEB mixer receiver. It is shown that the receiver sensitivity increases by a factor of 4 over a 16-minute scan, and the corresponding Allan time increases up to 10 seconds, as opposed to an open loop value of 1 second. Our experiments also demonstrate that the receiver sensitivity is limited by the intermediate frequency chain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1421
Permanent link to this record
 

 
Author
Title (down) SRON-TELIS Type
Year 2007 Publication Abbreviated Journal
Volume Issue Pages
Keywords
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ TELIS_proj Serial 405
Permanent link to this record