toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Sidorova, M. V.; Kozorezov, A. G.; Semenov, A. V.; Korneev, A. A.; Chulkova, G. M.; Korneeva, Y. P.; Mikhailov, M. Y.; Devizenko, A. Y.; Goltsman, G. N. url  openurl
  Title (down) Non-bolometric bottleneck in electron-phonon relaxation in ultra-thin WSi film Type Miscellaneous
  Year 2018 Publication arXiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords WSi films, diffusion constant, SSPD, SNSPD  
  Abstract We developed the model of the internal phonon bottleneck to describe the energy exchange between the acoustically soft ultrathin metal film and acoustically rigid substrate. Discriminating phonons in the film into two groups, escaping and nonescaping, we show that electrons and nonescaping phonons may form a unified subsystem, which is cooled down only due to interactions with escaping phonons, either due to direct phonon conversion or indirect sequential interaction with an electronic system. Using an amplitude-modulated absorption of the sub-THz radiation technique, we studied electron-phonon relaxation in ultrathin disordered films of tungsten silicide. We found an experimental proof of the internal phonon bottleneck. The experiment and simulation based on the proposed model agree well, resulting in tau{e-ph} = 140-190 ps at TC = 3.4 K, supporting the results of earlier measurements by independent techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Duplicated as 1305 Approved no  
  Call Number Serial 1341  
Permanent link to this record
 

 
Author Vachtomin, Yu. B.; Antipov, S. V.; Kaurova, N. S.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Svechnikov, S. I.; Grishina, E. V.; Voronov, B. M.; Gol'tsman, G. N. doi  openurl
  Title (down) Noise temperature, gain bandwidth and local oscillator power of NbN phonon-cooled HEB mixer at terahertz frequenciess Type Conference Article
  Year 2004 Publication Proc. 29th IRMMW / 12th THz Abbreviated Journal Proc. 29th IRMMW / 12th THz  
  Volume Issue Pages 329-330  
  Keywords  
  Abstract We present the performances of HEB mixers based on 3.5 nm thick NbN film integrated with log-periodic spiral antenna. The double side-band receiver noise temperature values are 1300 K and 3100 K at 2.5 THz and at 3.8 THz, respectively. The gain bandwidth of the mixer is 4.2 GHz and the noise bandwidth is 5 GHz. The local oscillator power is 1-3 /spl mu/W for mixers with different active area.  
  Address Karlsruhe, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Karlsruhe, Germany Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number RPLAB @ s @ nt_ifb_lopow_qoheb_karlsruhe_2004 Serial 354  
Permanent link to this record
 

 
Author Antipov, S. V.; Svechnikov, S. I.; Smirnov, K. V.; Vakhtomin, Y. B.; Finkel, M. I.; Goltsman, G. N.; Gershenzon, E. M. url  openurl
  Title (down) Noise temperature of quasioptical NbN hot electron bolometer mixers at 900 GHz Type Journal Article
  Year 2001 Publication Physics of Vibrations Abbreviated Journal Physics of Vibrations  
  Volume 9 Issue 4 Pages 242-245  
  Keywords NbN HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1069-1227 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1550  
Permanent link to this record
 

 
Author Gol'tsman, G. N.; Karasik, B. S.; Svechnikov, S. I.; Gershenzon, E. M.; Ekström, H.; Kollberg E. url  openurl
  Title (down) Noise temperature of NbN hot—electron quasioptical superconducting mixer in 200-700 GHz range Type Abstract
  Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 268  
  Keywords NbN HEB mixers, noise temperature  
  Abstract The electron heating effect in superconducting films is becoming very attractive for the development of THz range mixers because of the absence of frequency limitations inherent in the bolometric mechanism. However, the evidence for the spectral dependence of the position of optimal operating point has been found recently for NbN thin film devices 1.2 • The effect is presumably attributed to the variation in the absorption of radiation depending on the frequency. Since the resistive state is not spatially uniform the coupling efficiency of the mixer device with radiation can be different for frequencies larger than Zeilh and those smaller than 2Alh (d is the effective superconducting gap in the resistive state). To study the effect more thoroughly we have investigated the noise temperature of quasioptical NbN mixer device with broken hue tapered slot antenna in the frequency range 200-700 GHz. The device consists of several (5-10) parallel strips 1 jim wide and 6-7 tun thick made from NbN film on Si0 2 -Si 3 N 4 -Si membrane. The strips are connected with the gold contacts of the slot-line antenna which serves both as bias and IF leads. We used backward wave oscillators as LO sources and a standard hot/cold load technique for noise temperature measurements. The frequency dependence of noise temperature is mainly determined by two factors: frequency properties of the antenna and frequency dependence of the NbN film impedance. To separate both factors we monitored the frequency dependence of the device responsivity in the detector mode at a higher temperature within the superconducting transition where the impedance of NbN film is close to its normal resistance. In this case the impedance of the device itself is frequency independent. The experimental results will be reported at the Symposium. 1. G. Gollsman, S. Jacobsson, H. EkstrOm, B. Karasik, E. Kollberg, and E. Gershenzon, “Slot-line tapered antenna with NbN hot electron mixer for 300-360 GHz operation,” Proc of the 5th Int. Symp. on Space Terahertz Technology, pp. 209-213a, May 10-12,1994. 2. B.S. Karasik, G.N. Gol i tsman, B.M. Voronov, S.I. Svechnikov, E.M. Gershenzon, H. Ekstrom, S. Jacobsson, E. Kollberg, and K.S. Yngvesson, “Hot electron quasioptical NbN superconducting mixer,” presented at the ASC94, submitted to IEEE Trans. on Appl. Superconductivity.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1627  
Permanent link to this record
 

 
Author Schubert, J.; Semenov, A.; Gol'tsman, G.; Hübers, H.-W.; Schwaab, G.; Voronov, B.; Gershenzon, E. doi  openurl
  Title (down) Noise temperature of an NbN hot-electron bolometric mixer at frequencies from 0.7 THz to 5.2 THz Type Journal Article
  Year 1999 Publication Supercond. Sci. Technol. Abbreviated Journal  
  Volume 12 Issue 11 Pages 748-750  
  Keywords NbN HEB mixers  
  Abstract We report on noise temperature measurements of an NbN phonon-cooled hot-electron bolometric mixer in the terahertz frequency range. The devices were 3 nm thick films with in-plane dimensions 1.7 × 0.2 µm2 and 0.9 × 0.2 µm2 integrated in a complementary logarithmic-spiral antenna. Measurements were performed at seven frequencies ranging from 0.7 THz to 5.2 THz. The measured DSB noise temperatures are 1500 K (0.7 THz), 2200 K (1.4 THz), 2600 K (1.6 THz), 2900 K (2.5 THz), 4000 K (3.1 THz), 5600 K (4.3 THz) and 8800 K (5.2 THz).  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 298  
Permanent link to this record
 

 
Author Elantev, Andrey I.; Karasik, Boris S. url  openurl
  Title (down) Noise temperature of a superconducting hot-electron mixer Type Conference Article
  Year 1994 Publication Proc. 5th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 5th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 225  
  Keywords HEB mixers  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1645  
Permanent link to this record
 

 
Author Vachtomin, Y. B.; Antipov, S. V.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Gol'tsman, G. N. url  openurl
  Title (down) Noise temperature measurements of NbN phonon-cooled hot electron bolometer mixer at 2.5 and 3.8 THz Type Conference Article
  Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 236-241  
  Keywords HEB mixer, NbN, direct detection effect  
  Abstract We present the results of noise temperature measurements of NbN phonon-cooled HEB mixers based on a 3.5 nm NbN film deposited on a high-resistivity Si substrate with a 200 nm – thick MgO buffer layer. The mixer element was integrated with a log-periodic spiral antenna. The noise temperature measurements were performed at 2.5 THz and at 3.8 THz local oscillator frequencies for the 3 µm x 0.2 µm active area devices. The best uncorrected receiver noise temperatures found for these frequencies are 1300 K and 3100 K, respectively. A water vapour discharge laser was used as the LO source. We also present the results of direct detection contribution to the measured Y-factor and of a possible error of noise temperature calculation. This error was more than 8% for the mixer with in-plane dimensions of 2.4 x 0.16 µm 2 at the optimal noise temperature point. The use of a mesh filter enabled us to avoid the effect of direct detection and decrease optical losses by 0.5 dB. The paper is concluded by the investigation results of the mixer polarization response. It was shown that the polarization can differ from the circular one at 3.8 THz by more than 2 dB.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Northampton, Massachusetts, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 344  
Permanent link to this record
 

 
Author Karasik, B. S.; Elantiev, A. I. url  doi
openurl 
  Title (down) Noise temperature limit of a superconducting hot-electron bolometer mixer Type Journal Article
  Year 1996 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.  
  Volume 68 Issue 6 Pages 853-855  
  Keywords HEB mixer noise temperature, Johnson noise, thermal fluctuation noise, noise bandwidth  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0003-6951 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 260  
Permanent link to this record
 

 
Author Schubert, J.; Semenov, A.; Gol'tsman, G.; Hübers, H.-W.; Schwaab, G.; Voronov, B.; Gershenzon, E. url  openurl
  Title (down) Noise temperature and sensitivity of a NbN hot-electron mixer at frequencies from 0.7 THz to 5.2 THz Type Conference Article
  Year 1999 Publication Proc. 10th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 10th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 190-199  
  Keywords NbN HEB mixers  
  Abstract We report on noise temperature measurements of a NbN phonon-cooled hot-electron bolometric mixer at different bias regimes. The device was a 3 nm thick bridge with in-plane dimensions of 1.7 x 0.2 gm 2 integrated in a complementary logarithmic spiral antenna. Measurements were performed at frequencies ranging from 0.7 THz up to 5.2 THz. The measured DSB noise temperatures are 1500 K (0.7 THz), 2200 K (1.4 THz), 2600 K (1.6 THz), 2900 K (2.5 THz), 4000 K (3.1 THz) 5600 K (4.3 THz) and 8800 K (5.2 THz). Two bias regimes are possible in order to achieve low noise temperatures. But only one of them yields sensitivity fluctuations close to the theoretical limit.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1573  
Permanent link to this record
 

 
Author Tretyakov, Ivan; Seliverstov, Sergey; Zolotov, Philipp; Kaurova, Natalya; Voronov, Boris; Finkel, Matvey; Goltsman, Gregory url  openurl
  Title (down) Noise temperature and noise bandwidth of hot-electron bolometer mixer at 3.8 THz Type Abstract
  Year 2014 Publication Proc. 25th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 25th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 77  
  Keywords NbN HEB mixer  
  Abstract We report on our recent results of double sideband (DSB) noise temperature and bandwidth measurements of quasi-optical hot electron bolometer (HEB) mixers at local oscillator frequency of 3.8 THz. The HEB mixers used in this work were made of a NbN thin film and had a superconducting transition temperature of about 10.3 K. To couple terahertz radiation, the NbN microbridge (0.2 μm long and 2 μm wide) was integrated with a planar logarithmic-spiral antenna. The mixer chip was glued to an elliptical Si lens clamped tightly to a mixer block mounted on the 4.2 K plate of a liquid helium cryostat. The terahertz radiation was fed into the HEB device through the cryostat window made of a 0.5 mm thick HDPE. A band-pass mesh filter was mounted on the 4.2 K plate to minimize the direct detection effect [1]. We used a gas discharge laser irradiating at 3.8 THz H 2 0 line as a local oscillator (LO). The LO power was combined with a black body broadband radiation via Mylar beam splitter. Our receiver allows heterodyne detection with an intermediate frequency (IF) of a several gigahertz which dictates usage of a wideband SiGe low noise amplifier [2]. The receiver IF output signal was further amplified at room temperature and fed into a square-law power detector through a band-pass filter. The DSB receiver noise temperature was measured using a conventional Y-factor technique at IF of 1.25 GHz and band of 40 MHz. Using wideband amplifiers at both cryogenic and room temperature stages we have estimated IF bandwidth of the HEB mixers used. The obtained results strengthen the position of the HEB mixer as one of the most important tools for submillimeter astronomy. This device operates well above the energy gap (at frequencies above 1 THz) where performance of state-of-the-art SIS mixers starts to degrade. So, HEB mixers are expected to be a device of choice in astrophysical observations (ground-, aircraft- and space-based) at THz frequencies due to its excellent noise performance and low LO power requirements. The HEB mixers will be in operation on Millimetron Space Observatory. References 1. J. J. A. Baselmans, A. Baryshev, S. F. Reker, M. Hajenius, J. R. Gao, T. M. Klapwijk, Yu. Vachtomin, S. Maslennikov, S. Antipov, B. Voronov, and G. Gol'tsman, Appl. Phys. Lett., 86, 163503 (2005). 2. Sander Weinreb, Life Fellow, IEEE, Joseph C. Bardin, Student Member, IEEE, and Hamdi Mani, “Design of Cryogenic SiGe Low-Noise Amplifiers”, IEEE Transactions on Microwave Theory and Techniques, 55, 11, 2007.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1362  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: