|   | 
Details
   web
Records
Author Fuchs, G. D.; Burkard, G.; Klimov, P. V.; Awschalom, D. D.
Title (up) A quantum memory intrinsic to single nitrogen–vacancy centres in diamond Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 10 Pages 789-793
Keywords fromIPMRAS
Abstract A quantum memory, composed of a long-lived qubit coupled to each processing qubit, is important to building a scalable platform for quantum information science. These two qubits should be connected by a fast and high-fidelity operation to store and retrieve coherent quantum states. Here, we demonstrate a room-temperature quantum memory based on the spin of the nitrogen nucleus intrinsic to each nitrogen–vacancy (NV) centre in diamond. We perform coherent storage of a single NV centre electronic spin in a single nitrogen nuclear spin using Landau–Zener transitions across a hyperfine-mediated avoided level crossing. By working outside the asymptotic regime, we demonstrate coherent state transfer in as little as 120 ns with total storage fidelity of 88±6%. This work demonstrates the use of a quantum memory that is compatible with scaling as the nitrogen nucleus is deterministically present in each NV centre defect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 823
Permanent link to this record
 

 
Author Biercuk, Michael J.
Title (up) A quantum spectrum analyser Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue Pages 525–526
Keywords fromIPMRAS
Abstract Noise filters based on so-called dynamical decoupling pulse sequences can suppress decoherence in quantum systems. Turning this idea on its head now provides a new technique for studying the noise itself.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 826
Permanent link to this record
 

 
Author Arcizet, O.; Jacques, V.; Siria, A.; Poncharal, P.; Vincent, P.; Seidelin, S.
Title (up) A single nitrogen-vacancy defect coupled to a nanomechanical oscillator Type Journal Article
Year 2011 Publication Nature Physics Abbreviated Journal Nat. Phys.
Volume 7 Issue 11 Pages 879-883
Keywords fromIPMRAS
Abstract We position a single nitrogen-vacancy (NV) centre hosted in a diamond nanocrystal at the extremity of a SiC nanowire. This novel hybrid system couples the degrees of freedom of two radically different systems: a nanomechanical oscillator and a single quantum object. We probe the dynamics of the nano-resonator through time-resolved nanocrystal fluorescence and photon-correlation measurements, conveying the influence of a mechanical degree of freedom on a non-classical photon emitter. Moreover, by immersing the system in a strong magnetic field gradient, we induce a magnetic coupling between the nanomechanical oscillator and the NV electronic spin, providing nanomotion readout through a single electronic spin. Spin-dependent forces inherent to this coupling scheme are essential in a variety of active cooling and entanglement protocols used in atomic physics, and should now be within the reach of nanomechanical hybrid systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 819
Permanent link to this record
 

 
Author Kawano, Yukio; Ishibashi, Koji
Title (up) An on-chip near-field terahertz probe and detector Type Journal Article
Year 2008 Publication Nature Photonics Abbreviated Journal Nature Photon
Volume 2 Issue 10 Pages 618-621
Keywords single molecule, terahertz, THz, near-field, microscopy, imaging, 2DEG, GaAs/AlGaAs, detector, applications
Abstract The advantageous properties of terahertz waves, such as their transmission through objects opaque to visible light, are attracting attention for imaging applications. A promising approach for achieving high spatial resolution is the use of near-field imaging. Although this method has been well established in the visible and microwave regions, it is challenging to perform in the terahertz region. In the terahertz techniques investigated to date, detectors have been located remotely from the probe, which degrades sensitivity, and the influence of far-field waves is unavoidable. Here we present a new integrated detection device for terahertz near-field imaging in which all the necessary detection components — an aperture, a probe and a terahertz detector — are integrated on one semiconductor chip, which is cryogenically cooled. This scheme allows highly sensitive, high-resolution detection of the evanescent field alone and promises new capabilities for high-resolution terahertz imaging.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1749-4885 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 570
Permanent link to this record
 

 
Author Novotny, Lukas; van Hulst, Niek
Title (up) Antennas for light Type Journal Article
Year 2011 Publication Nature Photonics Abbreviated Journal Nat. Photon.
Volume 5 Issue 2 Pages 83-90
Keywords optical antennas
Abstract Optical antennas are devices that convert freely propagating optical radiation into localized energy, and vice versa. They enable the control and manipulation of optical fields at the nanometre scale, and hold promise for enhancing the performance and efficiency of photodetection, light emission and sensing. Although many of the properties and parameters of optical antennas are similar to their radiowave and microwave counterparts, they have important differences resulting from their small size and the resonant properties of metal nanostructures. This Review summarizes the physical properties of optical antennas, provides a summary of some of the most important recent developments in the field, discusses the potential applications and identifies the future challenges and opportunities.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ gujma @ Serial 748
Permanent link to this record