toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Karasik, B. S.; Elantiev, A. I. url  openurl
  Title (down) Analysis of the noise performance of a hot-electron superconducting bolometer mixer Type Conference Article
  Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 229-246  
  Keywords HEB mixers  
  Abstract A theoretical analysis for the noise temperature of hot–electron superconducting mixer has been presented. Thecontributions of both Johnson noise and electron temperature fluctuations have been evaluated. A set of criteriaensuring low noise performance of the mixer has been stated and a simple analytic expression for the noisetemperature of the mixer device has been suggested. It has been shown that an improvement of the mixer sensitivitydoes not necessarily follow by a decrease of the bandwidth. An SSB noise temperature limit due to the intrinsic noisemechanisms has been estimated to be as low as 40–90 K for a mixer device made from Nb or NbN thin film.Furthermore, the conversion gain bandwidth can be as wide as is allowed by the intrinsic electron temperaturerelaxation time if an appropriate choice of the mixer resistance has been made. The intrinsic mixer noise bandwidthis of 3 GHz for Nb device and of 5 GHz for NbN device. An additional improvement of the theory has been madewhen a distinction between the impedance measured at high intermediate frequency (larger than the mixerbandwidth) and the mixer ohmic resistance has been taken into account.Recently obtained experimental data on Nb and NbNbolometer mixer devices are viewed in connection with thetheoretical predictions.The noise temperature limit has also been specified for the mixer device where an outdiffusion coolingmechanism rather than the electron–phonon energy relaxation determines the mixer bandwidth. A consideration ofthe noise performance of a bolometer mixer made from YBaCuO film utilizing a hot–electron effect has been done.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Pasadena, Ca Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 258  
Permanent link to this record
 

 
Author Ekström, H.; Karasik, B.; Kollberg, E.; Gol'tsman, G.; Gershenzon, E. url  openurl
  Title (down) 350 GHz NbN hot electron bolometer mixer Type Conference Article
  Year 1995 Publication Proc. 6th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 6th Int. Symp. Space Terahertz Technol.  
  Volume Issue Pages 269-283  
  Keywords NbN HEB mixers  
  Abstract Superconducting NbN hot-electron bolometer (HEB) mixer devices have been fabricated and measured at 350 GHz. The HEB is integrated with a double dipole antenna on an extended crystalline quartz hyper hemispherical substrate lens. Heterodyne measurement gave a -3 dB bandwidth, mainly determined by the electron- phonon interaction time, of about 680 and 1000 MHz for two different films with Tc = 8.5 and 11 K respectively. The measured DSB receiver noise temperature is around 3000 K at 800 MHz IF frequency. The main contribution to the output noise from the device is due to electron temperature fluctuations with the equivalent output noise temperature TFL-100 K. TH, has the same frequency dependence as the IF response. The contribution from Johnson noise is of the order of T. The RF coupling loss is estimated to be = 6 dB. The film with lower Tc, had an estimated intrinsic low-frequency conversion loss = 7 dB, while the other film had a conversion loss as high as 14 dB. The difference in intrinsic conversion loss is explained by less uniform absorption of radiation. Measurements of the small signal impedance shows a transition of the output impedance from the DC differential resistance Rd=dV/dI in the low frequency limit to the DC resistance R 0 =Uoff 0 in the bias point for frequencies above 3 GHz. We judge that the optimum shape of the IV-characteristic is more easily obtained at THz frequencies where the main restriction in performance should come from problems with the RF coupling.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1628  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: