|   | 
Details
   web
Records
Author Meledin, D.; Tong, C. Y.-E.; Blundell, R.; Kaurova, N.; Smirnov, K.; Voronov, B.; Gol'tsman, G.
Title (down) Study of the IF bandwidth of NbN HEB mixers based on crystalline quartz substrate with an MgO buffer layer Type Journal Article
Year 2003 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 13 Issue 2 Pages 164-167
Keywords NbN HEB mixer
Abstract In this paper, we present the results of IF bandwidth measurements on 3-4 nm thick NbN hot electron bolometer waveguide mixers, which have been fabricated on a 200-nm thick MgO buffer layer deposited on a crystalline quartz substrate. The 3-dB IF bandwidth, measured at an LO frequency of 0.81 THz, is 3.7 GHz at the optimal bias point for low noise receiver operation. We have also made measurements of the IF dynamic impedance, which allow us to evaluate the intrinsic electron temperature relaxation time and self-heating parameters at different bias conditions.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 341
Permanent link to this record
 

 
Author Ryabchun, S.; Tong, C.-Y. E.; Blundell, R.; Kimberk, R.; Gol'tsman, G.
Title (down) Study of the effect of microwave radiation on the operation of HEB mixers in the terahertz frequency range Type Journal Article
Year 2007 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 17 Issue 2 Pages 391-394
Keywords NbN HEB mixers
Abstract We have investigated the effect of injecting microwave radiation, with a frequency much lower than that corresponding to the energy gap of the superconductor, on the performance of the hot-electron bolometer mixer incorporated into a THz heterodyne receiver. More specifically, we show that exposing the mixer to microwave radiation does not cause a significant rise of the receiver noise temperature and fall of the mixer conversion gain so long as the microwave power is a small fraction of local oscillator power. The injection of a small, but controlled amount of microwave power therefore enables active compensation of local oscillator power and coupling fluctuations which can significantly degrade the gain stability of hot electron bolometer mixer receivers.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1427
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-Yu Edward; Blundell, Raymond; Gol'tsman, Gregory
Title (down) Stabilization scheme for hot-electron bolometer receivers using microwave radiation Type Journal Article
Year 2009 Publication IEEE Trans. Appl. Supercond. Abbreviated Journal IEEE Trans. Appl. Supercond.
Volume 19 Issue 1 Pages 14-19
Keywords HEB, mixer, Allan variance, stabilization, radiometer equation
Abstract We present the results of a stabilization scheme for terahertz receivers based on NbN hot-electron bolometer (HEB) mixers that uses microwave radiation with a frequency much lower than the gap frequency of NbN to compensate for mixer current fluctuations. A feedback control loop, which actively controls the power level of the injected microwave radiation, has successfully been implemented to stabilize the operating point of the HEB mixer. This allows us to increase the receiver Allan time to 10 s and also improve the temperature resolution of the receiver by about 30% in the total power mode of operation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-8223 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ lobanovyury @ Serial 559
Permanent link to this record
 

 
Author Ryabchun, Sergey; Tong, Cheuk-yu Edward; Blundell, Raymond; Kimberk, Robert; Gol’tsman, Gregory
Title (down) Stabilisation of a terahertz hot-electron bolometer mixer with microwave feedback control Type Conference Article
Year 2007 Publication Proc. 18th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 18th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 193-198
Keywords waveguide NbN HEB mixers, Allan variance, stability
Abstract We report on implementation of microwave feedback control loop to stabilise the performance of an HEB mixer receiver. It is shown that the receiver sensitivity increases by a factor of 4 over a 16-minute scan, and the corresponding Allan time increases up to 10 seconds, as opposed to an open loop value of 1 second. Our experiments also demonstrate that the receiver sensitivity is limited by the intermediate frequency chain.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1421
Permanent link to this record
 

 
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W.
Title (down) Spectrally resolved single-photon imaging with hybrid superconducting – nanophotonic circuits Type Miscellaneous
Year 2016 Publication arXiv Abbreviated Journal arXiv
Volume Issue Pages 1-20
Keywords waiveguide SSPD, SNSPD, imaging
Abstract The detection of individual photons is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multi-color imaging techniques, such as single photon spectroscopy, fluorescence resonance energy transfer microscopy and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz. We demonstrate multi-detector devices for telecommunication and visible wavelengths and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting-nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imaging and provide the ingredients for quantum wavelength division multiplexing on a chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1334
Permanent link to this record
 

 
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W.
Title (down) Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits: supplementary material Type Miscellaneous
Year 2017 Publication Optica Abbreviated Journal
Volume Issue Pages 1-9
Keywords Quantum detectors; Spectrometers and spectroscopic instrumentation; Nanophotonics and photonic crystals; Fluorescence correlation spectroscopy; Fluorescence resonance energy transfer; Fluorescence spectroscopy; Imaging techniques; Optical components; Quantum key distribution
Abstract This document provides supplementary information to “Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits", DOI:10.1364/optica.4.000557. Here we detail the on-chip spectrometer design, its characterization and the experimental setup we used. In addition, we present a detailed report concerning the characterization of the superconducting nanowire single photon detectors. In the final sections, we describe sample preparation and characterization of the nanodiamonds containing silicon vacancy color centers.
Address
Corporate Author Thesis
Publisher Osa Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Kahl:17 Serial 1218
Permanent link to this record
 

 
Author Kahl, O.; Ferrari, S.; Kovalyuk, V.; Vetter, A.; Lewes-Malandrakis, G.; Nebel, C.; Korneev, A.; Goltsman, G.; Pernice, W.
Title (down) Spectrally multiplexed single-photon detection with hybrid superconducting nanophotonic circuits Type Journal Article
Year 2017 Publication Optica Abbreviated Journal Optica
Volume 4 Issue 5 Pages 557-562
Keywords Waveguide integrated superconducting single-photon detectors; Nanophotonics and photonic crystals; Quantum detectors; Spectrometers and spectroscopic instrumentation
Abstract The detection of individual photons by superconducting nanowire single-photon detectors is an inherently binary mechanism, revealing either their absence or presence while concealing their spectral information. For multicolor imaging techniques, such as single-photon spectroscopy, fluorescence resonance energy transfer microscopy, and fluorescence correlation spectroscopy, wavelength discrimination is essential and mandates spectral separation prior to detection. Here, we adopt an approach borrowed from quantum photonic integration to realize a compact and scalable waveguide-integrated single-photon spectrometer capable of parallel detection on multiple wavelength channels, with temporal resolution below 50 ps and dark count rates below 10 Hz at 80% of the devices' critical current. We demonstrate multidetector devices for telecommunication and visible wavelengths, and showcase their performance by imaging silicon vacancy color centers in diamond nanoclusters. The fully integrated hybrid superconducting nanophotonic circuits enable simultaneous spectroscopy and lifetime mapping for correlative imaging and provide the ingredients for quantum wavelength-division multiplexing on a chip.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ kovalyuk @ Serial 1119
Permanent link to this record
 

 
Author Maingault, L.; Tarkhov, M.; Florya, I.; Semenov, A.; Espiau de Lamaëstre, R.; Cavalier, P.; Gol’tsman, G.; Poizat, J.-P.; Villégier, J.-C.
Title (down) Spectral dependency of superconducting single photon detectors Type Journal Article
Year 2010 Publication J. Appl. Phys. Abbreviated Journal J. Appl. Phys.
Volume 107 Issue 11 Pages 116103 (1 to 3)
Keywords NbN SSPD, SNSPD
Abstract We investigate the effect of varying both incoming optical wavelength and width of NbN nanowires on the superconducting single photon detectors (SSPD) detection efficiency. The SSPD are current biased close to critical value and temperature fixed at 4.2 K, far from transition. The experimental results are found to verify with a good accuracy predictions based on the “hot spot model,” whose size scales with the absorbed photon energy. With larger optical power inducing multiphoton detection regime, the same scaling law remains valid, up to the three-photon regime. We demonstrate the validity of applying a limited number of measurements and using such a simple model to reasonably predict any SSPD behavior among a collection of nanowire device widths at different photon wavelengths. These results set the basis for designing efficient single photon detectors operating in the infrared (2–5 μm range).

This work was supported by European projects FP6 STREP “SINPHONIA” (Contract No. NMP4-CT-2005-16433) and IP “QAP” (Contract No. 15848).
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8979 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1392
Permanent link to this record
 

 
Author Cavalié, T.; Feuchtgruber, H.; Lellouch, E.; de Val-Borro, M.; Jarchow, C.; Moreno, R.; Hartogh, P.; Orton, G.; Greathouse, T. K.; Billebaud, F.; Dobrijevic, M.; Lara, L. M.; González, A.; Sagawa, H.
Title (down) Spatial distribution of water in the stratosphere of Jupiter from Herschel HIFI and PACS observations Type Journal Article
Year 2013 Publication Astron. Astrophys. Abbreviated Journal
Volume 553 Issue Pages A21 (1 to 16)
Keywords HEB mixer applications, HIFI, Herschel
Abstract Context. In the past 15 years, several studies suggested that water in the stratosphere of Jupiter originated from the Shoemaker-Levy 9 (SL9) comet impacts in July 1994, but a direct proof was missing. Only a very sensitive instrument observing with high spectral/spatial resolution can help to solve this problem. This is the case of the Herschel Space Observatory, which is the first telescope capable of mapping water in Jupiter's stratosphere.

Aims. We observed the spatial distribution of the water emission in Jupiter's stratosphere with the Heterodyne Instrument for the Far Infrared (HIFI) and the Photodetector Array Camera and Spectrometer (PACS) onboard Herschel to constrain its origin. In parallel, we monitored Jupiter's stratospheric temperature with the NASA Infrared Telescope Facility (IRTF) to separate temperature from water variability.

Methods. We obtained a 25-point map of the 1669.9 GHz water line with HIFI in July 2010 and several maps with PACS in October 2009 and December 2010. The 2010 PACS map is a 400-point raster of the water 66.4 μm emission. Additionally, we mapped the methane ν4 band emission to constrain the stratospheric temperature in Jupiter in the same periods with the IRTF.

Results. Water is found to be restricted to pressures lower than 2 mbar. Its column density decreases by a factor of 2–3 between southern and northern latitudes, consistently between the HIFI and the PACS 66.4 μm maps. We infer that an emission maximum seen around 15 °S is caused by a warm stratospheric belt detected in the IRTF data.

Conclusions. Latitudinal temperature variability cannot explain the global north-south asymmetry in the water maps. From the latitudinal and vertical distributions of water in Jupiter's stratosphere, we rule out interplanetary dust particles as its main source. Furthermore, we demonstrate that Jupiter's stratospheric water was delivered by the SL9 comet and that more than 95% of the observed water comes from the comet according to our models.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1085
Permanent link to this record
 

 
Author Zwiller, Vale<cc><81>ry; Blom, Hans; Jonsson, Per; Panev, Nikolay; Jeppesen, Sören; Tsegaye, Tedros; Goobar, Edgard; Pistol, Mats-Erik; Samuelson, Lars; Björk, Gunnar
Title (down) Single quantum dots emit single photons at a time: Antibunching experiments Type Journal Article
Year 2001 Publication Applied Physics Letters Abbreviated Journal Appl. Phys. Lett.
Volume 78 Issue 17 Pages 2476
Keywords antibunching, quantum dot
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6951 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 502
Permanent link to this record