toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Finkel, M. I.; Maslennikov, S. N.; Gol'tsman, G. N. url  doi
openurl 
  Title (down) Terahertz heterodyne receivers based on superconductive hot-electron bolometer mixers Type Journal Article
  Year 2005 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.  
  Volume 48 Issue 10-11 Pages 859-864  
  Keywords HEB, applications  
  Abstract We consider recent results in development of hot-electron bolometer mixers. Special attention is paid to optimization of the contacts between the antenna and the active area of a superconducting film. An important result in the study of the parasitic effect of direct detection is obtained during the measurement of the noise temperatures by the hot/cold load method. The latest results of studies of the waveguide hot-electron bolometer mixers and their successful practical applications are considered. Progress in development of high-frequency (over 1.3 THz) heterodyne receivers for several important international projects is discussed and new submillimeter radio astronomy projects ESPRIT and SAFIR are described.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-8443 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 381  
Permanent link to this record
 

 
Author Seliverstov, S. V.; Anfertyev, V. A.; Tretyakov, I. V.; Ozheredov, I. A.; Solyankin, P. M.; Revin, L. S.; Vaks, V. L.; Rusova, A. A.; Goltsman, G. N.; Shkurinov, A. P. url  doi
openurl 
  Title (down) Terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser Type Journal Article
  Year 2017 Publication Radiophys. Quant. Electron. Abbreviated Journal Radiophys. Quant. Electron.  
  Volume 60 Issue 7 Pages 518-524  
  Keywords NbN HEB mixer, QCL  
  Abstract We study characteristics of the laboratory prototype of a terahertz heterodyne receiver with an electron-heating mixer and a heterodyne based on the quantum-cascade laser. The results obtained demonstrate the possibility to use this receiver as a basis for creation of a high-sensitivity terahertz spectrometer, which can be used in many basic and practical applications. A significant advantage of this receiver will be the possibility of placing the mixer and heterodyne in the same cryostat, which will reduce the device dimensions considerably. The obtained experimental results are analyzed, and methods of optimizing the parameters of the receiver are proposed.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0033-8443 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1322  
Permanent link to this record
 

 
Author Hübers, H.-W.; Semenov, A.; Richter, H.; Birk, Manfred; Krocka, Michael; Mair, Ulrich; Smirnov, K.; Gol'tsman, G.; Voronov, B. url  openurl
  Title (down) Terahertz heterodyne receiver with a hot-electron bolometer mixer Type Conference Article
  Year 2002 Publication Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop Abbreviated Journal Proc. Far-IR, Sub-mm, and mm Detector Technology Workshop  
  Volume Issue Pages  
  Keywords NbN HEB mixers  
  Abstract During the past decade major advances have been made regarding low noise mixers for terahertz (THz) heterodyne receivers. State of the art hot-electron-bolometer (HEB) mixers have noise temperatures close to the quantum limit and require less than a µW power from the local oscillator (LO). The technology is now at a point where the performance of a practical receiver employing such mixer, rather than the figures of merit of the mixer itself, are of major concern. We have incorporated a phonon-cooled NbN HEB mixer in a 2.5 THz heterodyne receiver and investigated the performance of the receiver. This yields important information for the development of heterodyne receivers such as GREAT (German receiver for astronomy at THz frequencies aboard SOFIA)[1] and TELIS (Terahertz limb sounder), a balloon borne heterodyne receiver for atmospheric research [2]. Both are currently under development at DLR.  
  Address Monterey, CA, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Wold, J.; Davidson, J.  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes 4 pages; Unconfirmed but cited in https://kups.ub.uni-koeln.de/1622/1/bedorf.pdf; There is a Program of the Workshop: https://www.yumpu.com/en/document/view/7411055/far-ir-submm-mm-detector-technology-workshop-sofia-usra (there is no title of this article in the Program); There is also identical publication in Proc. ISSTT (Serial: 332, “A broadband terahertz heterodyne receiver with an NbN HEB mixer”). Approved no  
  Call Number Serial 1829  
Permanent link to this record
 

 
Author Gao, J. R.; Hovenier, J. N.; Yang, Z. Q.; Baselmans, J. J. A.; Baryshev, A.; Hajenius, M.; Klapwijk, T. M.; Adam, A. J. L.; Klaassen, T. O.; Williams, B. S.; Kumar, S.; Hu, Q.; Reno, J. L. openurl 
  Title (down) Terahertz heterodyne receiver based on a quantum cascade laser and a superconducting bolometer Type Journal Article
  Year 2005 Publication Appl. Phys. Lett. Abbreviated Journal Appl. Phys. Lett.  
  Volume 86 Issue Pages 244104 (1 to 3)  
  Keywords HEB, QCL  
  Abstract We report the first demonstration of an all solid-stateheterodyne receiver that can be used for high-resolution spectroscopy above 2THz suitable for space-based observatories. The receiver uses a NbN superconducting hot-electron bolometer as mixer and a quantum cascade laser operating at 2.8THz as local oscillator. We measure a double sideband receiver noise temperature of 1400K at 2.8THz and 4.2K, and find that the free-running QCL has sufficient power stability for a practical receiver, demonstrating an unprecedented combination of sensitivity and stability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 905  
Permanent link to this record
 

 
Author Cherednichenko, S.; Drakinskiy, V.; Lecomte, B.; Dauplay, F.; Krieg, J.-M.; Delorme, Y.; Feret, A.; Hübers, H.-W.; Semenov, A.D.; Gol’tsman, G.N. url  openurl
  Title (down) Terahertz heterodyne array based on NbN HEB mixers Type Abstract
  Year 2008 Publication Proc. 19th Int. Symp. Space Terahertz Technol. Abbreviated Journal  
  Volume Issue Pages 43  
  Keywords NbN HEB mixers array  
  Abstract A 16 pixel heterodyne receiver for 2.5 THz is been developed based on NbN superconducting hot-electron bolometer (HEB) mixers. The receiver uses a quasioptical RF coupling approach where HEB mixers are integrated into double dipole antennas on 1.5μm thick Si3N4 / SiO2 membranes. Miniature mirrors (one per pixel) and back short for the antenna were used to design the output mixer beam profile. The camera design allows all 16 pixel IF readout in parallel. The gain bandwidth of the HEB mixers on Si3N4 / SiO 2 membranes was found to be about 3 GHz, when an MgO buffer layers is applied on the membrane. We will also present the progress in the camera heterodyne tests.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number Serial 1411  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: