|   | 
Details
   web
Records
Author Vachtomin, Y. B.; Antipov, S. V.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Kaurova, N. S.; Grishina, E. V.; Voronov, B. M.; Gol'tsman, G. N.
Title (up) Noise temperature measurements of NbN phonon-cooled hot electron bolometer mixer at 2.5 and 3.8 THz Type Conference Article
Year 2004 Publication Proc. 15th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 15th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 236-241
Keywords HEB mixer, NbN, direct detection effect
Abstract We present the results of noise temperature measurements of NbN phonon-cooled HEB mixers based on a 3.5 nm NbN film deposited on a high-resistivity Si substrate with a 200 nm – thick MgO buffer layer. The mixer element was integrated with a log-periodic spiral antenna. The noise temperature measurements were performed at 2.5 THz and at 3.8 THz local oscillator frequencies for the 3 µm x 0.2 µm active area devices. The best uncorrected receiver noise temperatures found for these frequencies are 1300 K and 3100 K, respectively. A water vapour discharge laser was used as the LO source. We also present the results of direct detection contribution to the measured Y-factor and of a possible error of noise temperature calculation. This error was more than 8% for the mixer with in-plane dimensions of 2.4 x 0.16 µm 2 at the optimal noise temperature point. The use of a mesh filter enabled us to avoid the effect of direct detection and decrease optical losses by 0.5 dB. The paper is concluded by the investigation results of the mixer polarization response. It was shown that the polarization can differ from the circular one at 3.8 THz by more than 2 dB.
Address
Corporate Author Thesis
Publisher Place of Publication Northampton, Massachusetts, USA Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 344
Permanent link to this record
 

 
Author Vachtomin, Yu. B.; Antipov, S. V.; Kaurova, N. S.; Maslennikov, S. N.; Smirnov, K. V.; Polyakov, S. L.; Svechnikov, S. I.; Grishina, E. V.; Voronov, B. M.; Gol'tsman, G. N.
Title (up) Noise temperature, gain bandwidth and local oscillator power of NbN phonon-cooled HEB mixer at terahertz frequenciess Type Conference Article
Year 2004 Publication Proc. 29th IRMMW / 12th THz Abbreviated Journal Proc. 29th IRMMW / 12th THz
Volume Issue Pages 329-330
Keywords
Abstract We present the performances of HEB mixers based on 3.5 nm thick NbN film integrated with log-periodic spiral antenna. The double side-band receiver noise temperature values are 1300 K and 3100 K at 2.5 THz and at 3.8 THz, respectively. The gain bandwidth of the mixer is 4.2 GHz and the noise bandwidth is 5 GHz. The local oscillator power is 1-3 /spl mu/W for mixers with different active area.
Address Karlsruhe, Germany
Corporate Author Thesis
Publisher Place of Publication Karlsruhe, Germany Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number RPLAB @ s @ nt_ifb_lopow_qoheb_karlsruhe_2004 Serial 354
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Yngvesson, K. S.; Waldman, J.; Gol'tsman, G. N.; Yagoubov, P. A.; Voronov, B. M.; Gershenzon, E. M.
Title (up) Optical coupling and conversion gain for NbN HEB mixer at THz frequencies Type Conference Article
Year 1997 Publication Proc. 4-th Int. Semicond. Device Research Symp. Abbreviated Journal Proc. 4-th Int. Semicond. Device Research Symp.
Volume Issue Pages 47-50
Keywords NbN HEB mixers
Abstract
Address Charlottesville, Virginia
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1601
Permanent link to this record
 

 
Author Gerecht, E.; Musante, C. F.; Wang, Z.; Yngvesson, K. S.; Mueller, E. R.; Waldman, J.; Gol'tsman, G. N.; Voronov, B. M.; Cherednichenco, S. I.; Svechnikov, S. I.; Yagoubov, P. A.; Gershenzon, E. M.
Title (up) Optimization of hot eleciron bolometer mixing efficiency in NbN at 119 micrometer wavelength Type Conference Article
Year 1996 Publication Proc. 7th Int. Symp. Space Terahertz Technol. Abbreviated Journal Proc. 7th Int. Symp. Space Terahertz Technol.
Volume Issue Pages 584-600
Keywords NbN HEB mixers
Abstract We describe an investigation of a NbN HEB mixer for 2.5 THz. An intrinsic conversion loss of 23 dB has been measured with a two-laser measurement technique. The conversion loss was limited by the LO power available and is expected to decrease to 10 dB or less when sufficient LO power is available. For this initial experiment we used a prototype device which is directly coupled to the laser beams. We present results for a back-short technique that improves the optical coupling to the device and describe our progress for an antenna-coupled device with a smaller dimension. Based on our measured data for conversion loss and device output noise level, we predict that NbN HEB mixers will be capable of achieving DSB receiver noise temperatures of ten times the quantum noise limit in the THz range.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1616
Permanent link to this record
 

 
Author Tret’yakov, I. V.; Ryabchun, S. A.; Kaurova, N. S.; Larionov, P. A.; Lobastova, A. A.; Voronov, B. M.; Finkel, M. I.; Gol’tsman, G. N.
Title (up) Optimum absorbed heterodyne power for superconducting NbN hot-electron bolometer mixer Type Journal Article
Year 2010 Publication Tech. Phys. Lett. Abbreviated Journal Tech. Phys. Lett.
Volume 36 Issue 12 Pages 1103-1105
Keywords NbN HEB mixer
Abstract Absorbed heterodyne power has been measured in a low-noise broadband hot-electron bolometer (HEB) mixer for the terahertz range, operating on the effect of electron heating in the resistive state of an ultrathin superconducting NbN film. It is established that the optimum absorbed heterodyne power for the HEB mixer operating at 2.5 THz is about 100 nW.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1063-7850 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number Serial 1389
Permanent link to this record